663 research outputs found
Makespan Minimization via Posted Prices
We consider job scheduling settings, with multiple machines, where jobs
arrive online and choose a machine selfishly so as to minimize their cost. Our
objective is the classic makespan minimization objective, which corresponds to
the completion time of the last job to complete. The incentives of the selfish
jobs may lead to poor performance. To reconcile the differing objectives, we
introduce posted machine prices. The selfish job seeks to minimize the sum of
its completion time on the machine and the posted price for the machine. Prices
may be static (i.e., set once and for all before any arrival) or dynamic (i.e.,
change over time), but they are determined only by the past, assuming nothing
about upcoming events. Obviously, such schemes are inherently truthful.
We consider the competitive ratio: the ratio between the makespan achievable
by the pricing scheme and that of the optimal algorithm. We give tight bounds
on the competitive ratio for both dynamic and static pricing schemes for
identical, restricted, related, and unrelated machine settings. Our main result
is a dynamic pricing scheme for related machines that gives a constant
competitive ratio, essentially matching the competitive ratio of online
algorithms for this setting. In contrast, dynamic pricing gives poor
performance for unrelated machines. This lower bound also exhibits a gap
between what can be achieved by pricing versus what can be achieved by online
algorithms
Max-Min Greedy Matching
A bipartite graph G(U,V;E) that admits a perfect matching is given. One player imposes a permutation pi over V, the other player imposes a permutation sigma over U. In the greedy matching algorithm, vertices of U arrive in order sigma and each vertex is matched to the highest (under pi) yet unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching problem asks: suppose the first (max) player reveals pi, and the second (min) player responds with the worst possible sigma for pi, does there exist a permutation pi ensuring to match strictly more than a half of the vertices? Can such a permutation be computed in polynomial time?
The main result of this paper is an affirmative answer for these questions: we show that there exists a polytime algorithm to compute pi for which for every sigma at least rho > 0.51 fraction of the vertices of V are matched. We provide additional lower and upper bounds for special families of graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations
- …
