60 research outputs found

    Quantum Computation by Adiabatic Evolution

    Get PDF
    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.Comment: 24 pages, 12 figures, LaTeX, amssymb,amsmath, BoxedEPS packages; email to [email protected]

    How many functions can be distinguished with k quantum queries?

    Get PDF
    Suppose an oracle is known to hold one of a given set of D two-valued functions. To successfully identify which function the oracle holds with k classical queries, it must be the case that D is at most 2^k. In this paper we derive a bound for how many functions can be distinguished with k quantum queries.Comment: 5 pages. Lower bound on sorting n items improved to (1-epsilon)n quantum queries. Minor changes to text and corrections to reference

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Fine-Grained Reductions from Approximate Counting to Decision

    Get PDF
    In this paper, we introduce a general framework for fine-grained reductions of approximate counting problems to their decision versions. (Thus we use an oracle that decides whether any witness exists to multiplicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-time setting, and a similar result of M\"uller (IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the Negative-Weight Triangle problem (which is closely related to All-Pairs Shortest Path). We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential Time Hypothesis (SETH) is false, so that for some 1<c<21<c<2 and all kk there is an O(cn)O(c^n)-time algorithm for k-SAT. Then we prove that for all kk, there is an O((c+o(1))n)O((c+o(1))^n)-time algorithm for approximate #kk-SAT. In particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly-weaker statement that there is no algorithm to approximate #3-SAT to within a factor of 1+ϵ1+\epsilon in time 2o(n)/ϵ22^{o(n)}/\epsilon^2 (taking ϵ>0\epsilon > 0 as part of the input).Comment: An extended abstract was presented at STOC 201

    Credimus

    Full text link
    We believe that economic design and computational complexity---while already important to each other---should become even more important to each other with each passing year. But for that to happen, experts in on the one hand such areas as social choice, economics, and political science and on the other hand computational complexity will have to better understand each other's worldviews. This article, written by two complexity theorists who also work in computational social choice theory, focuses on one direction of that process by presenting a brief overview of how most computational complexity theorists view the world. Although our immediate motivation is to make the lens through which complexity theorists see the world be better understood by those in the social sciences, we also feel that even within computer science it is very important for nontheoreticians to understand how theoreticians think, just as it is equally important within computer science for theoreticians to understand how nontheoreticians think

    Theory of Computation

    No full text
    A more extensive and theoretical treatment of the material in 6.045J/18.400J, emphasizing computability and computational complexity theory. Regular and context-free languages. Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, oracles, probabilistic computation, and interactive proof systems

    Theory of Computation

    No full text
    This graduate level course is more extensive and theoretical treatment of the material in Computability, and Complexity (6.045J / 18.400J). Topics include Automata and Language Theory, Computability Theory, and Complexity Theory
    corecore