68 research outputs found
Nanostructural organization of naturally occurring composites - part II: silica-chitin-based biocomposites
Investigations of the micro- and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplectella aspergillum) possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicules sponge material with the aim of obtaining alkali-resistant compounds for detailed analysis. Here, we present a detailed study of the structural and physicochemical properties of spicules of the glass sponge Rossella fibulata. The structural similarity of chitin derived from this sponge to invertebrate alpha chitin has been confirmed by us unambiguously using physicochemical and biochemical methods. This is the first report of a silica-chitin composite biomaterial found in Rossella species. Finally, the present work includes a discussion related to strategies for the practical application of silica-chitin-based composites as biomaterials
Implementation of a non-equilibrium Green's function method to calculate spin transfer torque
We present an implementation of the steady state Keldysh approach in a
Green's function multiple scattering scheme to calculate the non-equilibrium
spin density. This density is used to obtain the spin transfer torque in
junctions showing the magnetoresistance effect. We use our implementation to
study the spin transfer torque in metallic Co/Cu/Co junctions.Comment: 4 pages, 4 figure
Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100–170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized
Electrical control of the magnetic state of Fe
Magneto-electric coupling offers a new pathway to information storage in magnetic memory devices. This phenomenon has been observed in various materials ranging from insulators to semiconductors. In bulk metallic systems, magneto-electric coupling has been disregarded as the electric field cannot enter bulk metals. In this work, we show that a substantial magneto-electric coupling exists in metallic Fe nano-islands grown on Cu(111). Using the electric field in the tunnel junction of a scanning tunneling microscope, the magnetic order parameter and the crystal structure of Fe was changed on the nanometer scale. This allows high density nonvolatile information storage by means of magneto-electric coupling in a simple metallic system
On the Quantitative Impact of the Schechter-Valle Theorem
We evaluate the Schechter-Valle (Black Box) theorem quantitatively by
considering the most general Lorentz invariant Lagrangian consisting of
point-like operators for neutrinoless double beta decay. It is well known that
the Black Box operators induce Majorana neutrino masses at four-loop level.
This warrants the statement that an observation of neutrinoless double beta
decay guarantees the Majorana nature of neutrinos. We calculate these
radiatively generated masses and find that they are many orders of magnitude
smaller than the observed neutrino masses and splittings. Thus, some lepton
number violating New Physics (which may at tree-level not be related to
neutrino masses) may induce Black Box operators which can explain an observed
rate of neutrinoless double beta decay. Although these operators guarantee
finite Majorana neutrino masses, the smallness of the Black Box contributions
implies that other neutrino mass terms (Dirac or Majorana) must exist. If
neutrino masses have a significant Majorana contribution then this will become
the dominant part of the Black Box operator. However, neutrinos might also be
predominantly Dirac particles, while other lepton number violating New Physics
dominates neutrinoless double beta decay. Translating an observed rate of
neutrinoless double beta decay into neutrino masses would then be completely
misleading. Although the principal statement of the Schechter-Valle theorem
remains valid, we conclude that the Black Box diagram itself generates
radiatively only mass terms which are many orders of magnitude too small to
explain neutrino masses. Therefore, other operators must give the leading
contributions to neutrino masses, which could be of Dirac or Majorana nature.Comment: 18 pages, 4 figures; v2: minor corrections, reference added, matches
journal version; v3: typo corrected, physics result and conclusions unchange
Development of sensor nodes and sensors for smart farming
The world population is continuously increasing. Smart farming is required to keep up with this development by producing more food in a sustainable way. In many new sensor solution developments, the results of the sensor itself is at the target, but the whole solution fails to meet the requirements of the agriculture sensing use cases: the developments suffer from singular approaches with a constricted view solely on the sensor, which might be exchangeable. In this article, we present a holistic approach that can help to overcome these challenges. This approach considers the whole use case, from sense, compute, and connect to power. The approach is discussed with the example of the PLANtAR project, where we develop a soil nitrate sensor and a new leaf wetness and microclimate sensor for application in a greenhouse. The resulting sensor is integrated into a sensor node and compared to a state-of-the-art system. The work shows what is needed to assess the best tradeoffs for agriculture use cases based on a horticulture application
Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron
The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide
- …