57 research outputs found

    Tunable Synthesis of Functionalized Cyclohexa-1,3-dienes and 2‑Aminobenzophenones/Benzoate from the Cascade Reactions of Allenic Ketones/Allenoate with Amines and Enones

    No full text
    A TEMPO-dependent tunable synthesis of functionalized cyclohexa-1,3-dienes and 2-aminobenzophenones/benzoate from the one-pot cascade reactions of allenic ketones/allenoate with amines and enones is presented. Mechanistically, the construction of the entitled six-membered carbocycles involves the in situ generation of an enaminone intermediate via the conjugate addition of allenic ketone with amine followed by its catalyst- and base-free [3+3] annulation with enone along with the simultaneous introduction of the valuable amino and carbonyl groups

    Tunable Synthesis of Functionalized Cyclohexa-1,3-dienes and 2‑Aminobenzophenones/Benzoate from the Cascade Reactions of Allenic Ketones/Allenoate with Amines and Enones

    No full text
    A TEMPO-dependent tunable synthesis of functionalized cyclohexa-1,3-dienes and 2-aminobenzophenones/benzoate from the one-pot cascade reactions of allenic ketones/allenoate with amines and enones is presented. Mechanistically, the construction of the entitled six-membered carbocycles involves the in situ generation of an enaminone intermediate via the conjugate addition of allenic ketone with amine followed by its catalyst- and base-free [3+3] annulation with enone along with the simultaneous introduction of the valuable amino and carbonyl groups

    Synthesis of Pyrazolo[5,1‑<i>a</i>]isoindoles and Pyrazolo[5,1‑<i>a</i>]isoindole-3-carboxamides through One-Pot Cascade Reactions of 1‑(2-Bromophenyl)buta-2,3-dien-1-ones with Isocyanide and Hydrazine or Acetohydrazide

    No full text
    A novel and efficient method for the construction of the pyrazolo­[5,1-<i>a</i>]­isoindole scaffold via a one-pot three-component cascade reaction of 1-(2-bromophenyl)­buta-2,3-dien-1-one with hydrazine and isocyanide promoted by a Pd catalyst is described. This cascade process proceeds through initial condensation of the allenic ketone with hydrazine followed by Pd-catalyzed isocyanide insertion into the C–Br bond and intramolecular C–N bond formation. Interestingly, when acetohydrazide was used in place of hydrazine, a more sophisticated procedure involving condensation, isocyanide insertion into C–H and C–Br bonds, deacetylation, and formation of C–C, C–O, and C–N bonds occurred to afford pyrazolo­[5,1-<i>a</i>]­isoindole-3-carboxamides with good efficiency

    Rhodium(III)-Catalyzed Redox-Neutral Synthesis of Isoquinolinium Salts via C–H Activation of Imines

    No full text
    Redox-neutral synthesis of isoquinolinium salts via C–H activation of presynthesized or in situ formed imines and coupling with α-diazo ketoesters has been realized, where a zinc salt promotes cyclization as well as provides a counteranion. Under three-component conditions, both ketone and aldehydes are viable arene sources. The coupling of imines with diazo malonates under similar conditions afforded isoquinolin-3-ones as the coupling product

    Open Tubular Capillary Electrochromatography-Mass Spectrometry for Analysis of Underivatized Amino Acid Enantiomers with a Porous Layer-Gold Nanoparticle-Modified Chiral Column

    No full text
    By developing a novel chiral column, we integrate open tubular capillary electrochromatography into sheathless mass spectrometry (MS) for efficient analysis of underivatized amino acid enantiomers. The chiral column is easily fabricated by modifying the inner surface of a capillary with a three-dimensional porous layer (PL, thickness ∼ 90 nm, pore size ∼ 30 nm) and gold nanoparticles and by introducing a chiral selector, thiol β-cyclodextrin (SH-β-CD), onto the modified surface via Au–S bonds. This approach greatly enhances the specific surface area and thus the ratio of the stationary phase to mobile phase and interaction between the stationary phase and analytes. The proposed PLOT@Au@CD column is coupled to the sheathless CE-ESI-MS system for chiral analysis of amino acid enantiomers. No derivatization of amino acids is required for chiral analysis, and baseline separation of a total of 15 pairs of amino acid enantiomers is achieved within 17 min with high column efficiencies of 5.60 × 104 to 1.82 × 106 N/m, high resolutions of 1.51–10.0, and low limits of detection between 0.02 and 0.09 μg/mL. The separation efficiency and MS intensity are only slightly decreased over 60 runs or after usage for 15 days, showing excellent repeatability and stability of the PLOT@Au@CD column. The proposed method is successfully applied to the determination of amino acid enantiomers in vinegar samples with satisfactory accuracy. Our study provides a new approach for developing a chiral stationary phase in the chromatographic separation technique, which can be easily coupled to sensitive MS detection, thus it would be of value for various applications in the fields of chiral analysis

    Rh(III)-Catalyzed C–C Coupling of Diverse Arenes and 4‑Acyl-1-sulfonyltriazoles via C–H Activation

    No full text
    4-Acyl-1-sulfonyltriazoles act as versatile carbene reagents in Cp*Rh­(III)-catalyzed ortho-selective coupling with arenes via C–H activation. The coupling led to olefination with possible cyclization, depending on the nature of the arene

    Rhodium(III)-Catalyzed Redox-Neutral Synthesis of Isoquinolinium Salts via C–H Activation of Imines

    No full text
    Redox-neutral synthesis of isoquinolinium salts via C–H activation of presynthesized or in situ formed imines and coupling with α-diazo ketoesters has been realized, where a zinc salt promotes cyclization as well as provides a counteranion. Under three-component conditions, both ketone and aldehydes are viable arene sources. The coupling of imines with diazo malonates under similar conditions afforded isoquinolin-3-ones as the coupling product

    Rhodium(III)-Catalyzed Redox-Neutral Synthesis of Isoquinolinium Salts via C–H Activation of Imines

    No full text
    Redox-neutral synthesis of isoquinolinium salts via C–H activation of presynthesized or in situ formed imines and coupling with α-diazo ketoesters has been realized, where a zinc salt promotes cyclization as well as provides a counteranion. Under three-component conditions, both ketone and aldehydes are viable arene sources. The coupling of imines with diazo malonates under similar conditions afforded isoquinolin-3-ones as the coupling product

    Metal-Free sp<sup>3</sup> C‑SCF<sub>3</sub> Coupling Reactions between Cycloketone Oxime Esters and <i>S</i>‑trifluoromethyl 4‑Methylbenzenesulfonothioate

    No full text
    A novel sp3 C-SCF3 coupling reaction between cycloketone oxime esters and S-trifluoromethyl 4-methylbenzenesulfonothioate was achieved. Ethanol was found to facilitate this transformation by trapping the sulfonyl cation. The metal-free and photocatalyst-free reaction conditions, as well as the broad substrate scope, make this a green protocol for the synthesis of SCF3-substituted nitriles

    Rh(III)-Catalyzed Asymmetric Synthesis of Axially Chiral Biindolyls by Merging C–H Activation and Nucleophilic Cyclization

    No full text
    Enantiomeric access to pentatomic biaryls is challenging due to their relatively low rotational barrier. Reported herein is the mild and highly enantioselective synthesis of 2,3′-biindolyls via underexplored integration of C–H activation and alkyne cyclization using a unified chiral Rh­(III) catalyst. The reaction proceeded via initial C–H activation followed by alkyne cyclization. A chiral rhodacyclic intermediate has been isolated from stoichiometric C–H activation, which offers direct mechanistic insight
    • …
    corecore