456 research outputs found
Stress-Strain-Sorption Behaviour of Smectites Upon Exposure to Dry and Wet CO2
The swelling-shrinkage behavior of smectites induced by interlayer uptake or sorption of CO2 and H2O has been investigated with increasing interest recent years, primarily because of its potential impact on the sealing efficiency of clay-bearing caprocks overlying CO2 storage reservoirs. To get a better understanding of the stress-strain-sorption coupling in smectite exposed to supercritical CO2, we performed multiple stepwise axial loading and unloading, oedometer-type experiments on ∼1 mm thick discs of pre-pressed Na-SWy-1 and of Ca-SAz-1 montmorillonite. Initially air-dry (AD) samples were first tested in the presence of wet CO2 (20% RH) at 10 MPa pressure, and in the vacuum-dry (VD) state in the presence of pure (dry) CO2 at 10 MPa. The samples were incrementally loaded and unloaded at 40°C, employing effective axial stresses ranging from 0.5 to 44 MPa. Control tests using wet and dry He or Ar instead of CO2, were performed to distinguish strains due to loading-related CO2 sorption/desorption from purely poroelastic effects. All samples saturated with CO2 exhibited 30–65% lower apparent stiffness moduli than when saturated with He or Ar, showing that CO2 adsorption/desorption altered the mechanical response of pre-pressed smectites. Relative to the He and Ar tests, swelling strains of a few % (corrected for poroelastic effects) were measured for AD Na-SWy-1 smectite exposed to wet CO2, decreasing from 4.9 to 3.8% with increasing effective axial stresses in the range 1.6–36.2 MPa. AD SAz-1 material exhibited similar tends. VD samples tested with dry CO2 showed much smaller relative swelling strains (0.5–1.5%), which also decreased with increasing applied effective stresses. The experimental data on relative swelling strain versus effective stress are well fitted by a recent thermodynamic model for stress-strain-sorption behavior in coal. Results derived from model fits indicate that smectite-rich rocks have significant storage capacity for CO2 at shallow depths (up to 1.5–2 km) through CO2 sorption by the clay minerals. However, this component of storage capacity is reduced by more than 80% with increasing burial depth beyond 3 km. The model provides a first step towards modelling stress-strain-sorption effects in smectite rich caprocks penetrated by CO2, though further refinements are needed for broader application to the smectite-CO2-H2O system
Učinkovitost uklanjanja onečišćenja i proizvodnja električne energije pri obradi procjednih voda mikrobnim gorivnim ćelijama s kemijskom katodom i aerobnom biokatodom
The effect of cathode type on contaminant removal efficiency and electricity production in disposing leachate was investigated in a self-assembled microbial fuel cell (MFC). When the landfill leachate was treated with the chemical-cathode MFC (CMFC) and aerobic bio-cathode MFC (ABMFC), the maximum output voltages were 699.0 mV and 459.4 mV, the maximum output powers were 197.7 mW m–3 and 147.6 mW m–3, and the internal resistances were 900 Ω and 700 Ω, respectively. After running the MFCs for 45 days, the COD removal ratios of CMFC and ABMFC were 56.5 % and 64.3 %, the Coulombic efficiencies were 14.3 % and 17.1 %, and the ammonia nitrogen removal ratios were 53.8 % and 58.1 %, respectively.
This work is licensed under a Creative Commons Attribution 4.0 International License.Istraživan je utjecaj vrste katode na učinkovitost uklanjanja zagađivala i proizvodnju električne energije pri obradi procjedne vode samoorganizirajućim mikrobnim gorivnim ćelijama (MFC). Kada se procjedna voda s odlagališta obrađivala MFC-om s kemijskom katodom (CMFC) i aerobnom biokatodom (ABMFC), maksimalni izlazni naponi iznosili su 699,0 mV odnosno 459,4 mV, maksimalne izlazne snage 197,7 mW m–3 i 147,6 mW m–3, a unutarnji otpori 900 Ω i 700 Ω. Nakon 45 dana rada gorivnih ćelija, kemijska potrošnja kisika za CMFC i ABMFC smanjena je za 56,5 % i 64,3 %, kulonska učinkovitost bila je 14,3 % i 17,1 %, a uklonjeno je 53,8 % odnosno 58,1 % amonijačnog dušika.
Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna
Taurine alleviates Streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells
Streptococcus uberis infection can cause serious inflammation and damage to mammary epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy plays an important role in regulating immunity and clearing invasive pathogens and may be regulated by taurine. However, the relationships between taurine, autophagy, and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits over-activation of the NF-κB pathway, and alleviates the inflammation and damage caused by S. uberis infection. This study increases our understanding of the mechanism through which taurine regulates autophagy and is the first to demonstrate the role of autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical basis for employing nutritional elements (taurine) to regulate innate immunity and control S. uberis infection. It also provides theoretical support for the development of prophylactic strategies for this important pathogen
FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence
Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections
Molecular epidemiology and antimicrobial resistance of outbreaks of Klebsiella pneumoniae clinical mastitis in Chinese dairy farms
Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis
Taurine reprograms mammary-gland metabolism and alleviates inflammation induced by Streptococcus uberis in mice
Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis
MYCBP2 expression correlated with inflammatory cell infiltration and prognosis immunotherapy in thyroid cancer patients
IntroductionImmune checkpoint inhibitors (ICIs) have shown promising results for the treatment of multiple cancers. ICIs and related therapies may also be useful for the treatment of thyroid cancer (TC). In TC, Myc binding protein 2 (MYCBP2) is correlated with inflammatory cell infiltration and cancer prognosis. However, the relationship between MYCBP2 expression and ICI efficacy in TC patients is unclear.MethodsWe downloaded data from two TC cohorts, including transcriptomic data and clinical prognosis data. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict the efficacy of ICIs in TC patients. MCPcounter, xCell, and quanTIseq were used to calculate immune cell infiltration scores. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to evaluate signaling pathway scores. Immunohistochemical (IHC) analysis and clinical follow up was used to identify the MYCBP2 protein expression status in patients and associated with clinical outcome.ResultsA higher proportion of MYCBP2-high TC patients were predicted ICI responders than MYCBP2-low patients. MYCBP2-high patients also had significantly increased infiltration of CD8+ T cells, cytotoxic lymphocytes (CTLs), B cells, natural killer (NK) cells and dendritic cells (DC)s. Compared with MYCBP2-low patients, MYCBP2-high patients had higher expression of genes associated with B cells, CD8+ T cells, macrophages, plasmacytoid dendritic cells (pDCs), antigen processing and presentation, inflammatory stimulation, and interferon (IFN) responses. GSEA and ssGSEA also showed that MYCBP2-high patients had significantly increased activity of inflammatory factors and signaling pathways associated with immune responses.In addiation, Patients in our local cohort with high MYCBP2 expression always had a better prognosis and greater sensitivity to therapy while compared to patients with low MYCBP2 expression after six months clinic follow up.ConclusionsIn this study, we found that MYCBP2 may be a predictive biomarker for ICI efficacy in TC patients. High MYCBP2 expression was associated with significantly enriched immune cell infiltration. MYCBP2 may also be involved in the regulation of signaling pathways associated with anti-tumor immune responses or the production of inflammatory factors
A Comparative Study on the Psychological Health of Frontline Health Workers in Wuhan Under and After the Lockdown
Background: The coronavirus disease-2019 (COVID-19) outbreak and a 3-month lockdown of Wuhan may have had a long-term impact on the mental health of frontline healthcare workers (HWs). However, there is still a lack of comparative studies on the mental health of front-line HWs in the initial phase of the lockdown and 1 month after the lifting of the lockdown.Methods: We recruited 1717 HWs during the initial phase of the lockdown and 2214 HWs 1 month after the lifting of the lockdown, and their baseline characteristics and psychiatric health in these two phases were compared. Furthermore, Pearson's Chi-square test and multivariate logistic regression analysis were used to determine the possible risk factors associated with depressive symptoms in the front-line HWs.Results: Compared with the initial phase of the lockdown, the proportion of HWs with anxiety symptoms and stress decreased, while the proportion of HWs with depressive symptoms increased a month after the lifting of the lockdown. Male sex, exercise habit, comorbidities, and having family members or relatives with suspected or confirmed COVID-19 infection were significantly related to the increased incidence of depressive symptoms during the initial phase of the lockdown. Comorbidities, negative effect of media coverage, working >4 days a week, lower annual household income, and deteriorating relationships with family members were associated with depressive symptoms a month after the lifting of the lockdown.Conclusion: The increased proportion of HWs with depressive symptoms 1 month after the lifting of the lockdown suggested that mental health of front-line HWs should be a top-priority issue, not only during, but also after the pandemic
Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses
T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis
- …