7 research outputs found

    Preparation of Hydrophilic Encapsulated Carbon Nanotubes with Polymer Brushes and Its Application in Composite Hydrogels

    No full text
    Carbon nanotubes can be used as promising reinforcement materials to improve the mechanical properties of hydrogels, but their poor dispersibility in aqueous solution severely limits their application in preparation of composite hydrogels. Therefore, to develop method for modification of carbon nanotubes is still highly desired. In this paper, a facile approach for preparation of the hydrophilic carbon nanotube was reported. The encapsulated multiwalled carbon nanotubes (E-CNT-PAA) with cross-linked shell structure were obatined through the self-assembly of the amphipathic azide diblock copolymers poly­(acrylic acid)-<i>b</i>-poly­(4-vinylbenzyl azide-<i>co</i>-styrene) (PAA-<i>b</i>-(PVBA-<i>co</i>-PS)), and the cross-linking of inside azide groups under UV irradiation. The encapsulated MWCNT was characterized by FT-IR, Raman and TEM. It was demonstrated that the dispersibility of the hydrophilic encapsulated MWCNTs was related to the length of the poly­(acrylic acid) brushes. Subsequently, thermal-responsive composite hydrogels (PNIPAM/E-CNT-PAA) were prepared by in situ polymerization of <i>N</i>-isopropylacrylamide (NIPAM) in the solution of dispersed E-CNT-PAA. The results showed that the composite hydrogels possessed high mechanical properties compared to the pure PNIPAM hydrogel. The tensile strength and elongation of the composite hydrogels were highly dependent on the content of the modified MWCNTs. The composite hydrogels with 0.46 wt % MWCNTs exhibited tensile strength of 97.7 kPa and elongation of 465%, which were at least 3.5× higher than those of the PNIPAM hydrogel. Moreover, the composite hydrogels displayed significant and reversible stimuli-responsiveness

    Synthesis of Structure-Controlled Polyborosiloxanes and Investigation on Their Viscoelastic Response to Molecular Mass of Polydimethylsiloxane Triggered by Both Chemical and Physical Interactions

    No full text
    A series of polyborosiloxanes (PBSs) was synthesized by mixing hydroxy-terminated polydimethylsiloxanes (PDMS) and boric acid (BA) in toluene at 120 °C. The molecular masses of selected PDMS precursors were in a wide range, covering from below up to far above the critical entanglement molecular mass of PDMS. The reaction kinetics was followed by using Fourier transform infrared (FTIR) spectroscopy. Unreacted BA was removed from raw PBSs after the reactions. The influence of molecular mass of PDMS precursors on the rheological property of PBSs was explored by dynamic oscillatory frequency sweeps. The results showed that the plateau elastic moduli of PBSs were highly dependent on the molecular mass of PDMS precursors. The plateau elastic moduli of PBSs decreased at first and then increased with increasing molecular mass of PDMS precursors. PBS1 and PBS2 prepared from unentangled PDMS precursors showed sufficient fits by using the two-mode Maxwell model, whereas PBS3 to PBS6 prepared from highly entangled PDMS precursors showed obvious deviations from the two-mode Maxwell model. It could be concluded that the changing trend of plateau elastic modulus of PBSs versus molecular mass of PDMS precursors was determined by the number density of supramolecular interactions (Si–O:B weak bonding and hydrogen-bonding of the end groups Si–O–B­(OH)<sub>2</sub>) and the number density of topological entanglements

    Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks

    No full text
    Covalent organic frameworks (COFs) are crystalline polymers with permanent porosity. They are usually synthesized as micrometer-sized powders or two-dimensional thin films and membranes for applications in molecular storage, separation, and catalysis. In this work, we report a general method to integrate COFs with imine or β-ketoenamine linkages into three-dimensional (3D)-printing materials. A 3D-printing template, Pluronic F127, was introduced to coassemble with imine polymers in an aqueous environment. By limitation of the degree of imine polycondensation during COF formation, the amorphous imine polymer and F127 form coassembled 3D-printable hydrogels with suitable shear thinning and rapid self-healing properties. After the removal of F127 followed by an amorphous-to-crystalline transformation, three β-ketoenamine- and imine-based COFs were fabricated into 3D monoliths possessing high crystallinity, hierarchical pores with high surface areas, good structural integrity, and robust mechanical stability. Moreover, when multiple COF precursor inks were employed for 3D printing, heterogeneous dual-component COF monoliths were fabricated with high spatial precision. This method not only enables the development of COFs with sophisticated 3D macrostructure but also facilitates the heterogeneous integration of COFs into devices with interconnected interfaces at the molecular level

    Tripodal Organic Cages with Unconventional CH···O Interactions for Perchlorate Remediation in Water

    No full text
    Perchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized Csp3–H bonds that exhibit selectively binding to perchlorate in organic solvents and water. These cages demonstrated binding affinities to perchlorate of 105–106 M–1 at room temperature, along with high selectivity over competing anions, such as iodide and nitrate. Through single crystal structure analysis and density functional theory calculations, we identified unconventional Csp3–H···O interactions as the primary driving force for perchlorate binding. Additionally, we successfully incorporated this cage into a 3D-printable polymer network, showcasing its efficacy in removing perchlorate from water

    Preparation of Covalent Pseudo-Two-Dimensional Polymers in Water by Free Radical Polymerization

    No full text
    Two-dimensional (2D) polymer has attracted considerable attention due to its excellent properties. Although a number of 2D polymers have been reported, preparation of free-standing single-layer 2D polymers in solution is still a big challenge. Here we report a facile and highly efficient strategy for synthesis of free-standing single-layer covalent pseudo-2D polymers via free radical polymerization in water on a large scale. The strategy designated as “two-dimensional self-assembly polymerization (2DSP)” includes formation of supramolecular 2D nanosheets by self-assembly of bola-amphiphilic monomer that bearing two maleic acid moieties and transformation of supramolecular 2D nanosheets to covalent pseudo-2D polymers by copolymerization with vinyl monomers. We find that the counterion of the bola-amphiphile has a significant influence on formation of single-layer supramolecular 2D nanosheets, and the formation of 2D polymer sheets is highly related to the vinyl monomers. The unique 2D polymer sheets were used to prepare hydrogels with excellent mechanical properties

    Dependences of Rheological and Compression Mechanical Properties on Cellular Structures for Impact-Protective Materials

    No full text
    In this study, three typical impact-protective materials, D3O, PORON XRD, and DEFLEXION were chosen to explore the dependences of rheological and compression mechanical properties on the internal cellular structures with polymer matrix characteristics, which were examined using Fourier transform infrared spectroscopy, thermogravimetric analyses, and scanning electron microscopy with energy dispersive spectroscopy. The rheological property of these three foaming materials were examined using a rheometer, and the mechanical property in a compression mode was further examined using an Instron universal tensile testing machine. The dependences of rheological parameters, such as dynamic moduli, normalized moduli, and loss tangent, on angular frequency, and the dependences of mechanical properties in compression, such as the degree of strain-hardening, hysteresis, and elastic recovery, on the strain rate for D3O, PORON XRD, and DEFLEXION can be well-correlated with their internal cellular structural parameters, revealing, for example, that D3O and PORON XRD exhibit simultaneously high strength and great energy loss in a high-frequency impact, making them suitable for use as soft, close-fitting materials; however, DEFLEXION dissipates much energy whether it suffers a large strain rate or not, making it suitable for use as a high-risk impact-protective material. The rheometry and compression tests used in this study can provide the basic references for selecting and characterizing certain impact-protective materials for applications

    High-Fidelity Sensitive Tracing Circulating Tumor Cell Telomerase Activity

    No full text
    Dynamic tracing of intracellular telomerase activity plays a crucial role in cancer cell recognition and correspondingly in earlier cancer diagnosis and personalized precision therapy. However, due to the complexity of the required reaction system and insufficient loading of reaction components into cells, achieving a high-fidelity determination of telomerase activity is still a challenge. Herein, an Aptamer-Liposome mediated Telomerase activated poly-Molecular beacon Arborescent Nanoassembly(ALTMAN) approach was described for direct high-fidelity visualization of telomerase activity. Briefly, intracellular telomerase activates molecular beacons, causing their hairpin structures to unfold and produce fluorescent signals. Furthermore, multiple molecular beacons can self-assemble, forming arborescent nanostructures and leading to exponential amplification of fluorescent signals. Integrating the enzyme-free isothermal signal amplification successfully increased the sensitivity and reduced interference by leveraging the skillful design of the molecular beacon and the extension of the telomerase-activated TTAGGG repeat sequence. The proposed approach enabled ultrasensitive visualization of activated telomerase exclusively with a prominent detection limit of 2 cells·μL–1 and realized real-time imaging of telomerase activity in living cancer cells including blood samples from breast cancer patients and urine samples from bladder cancer patients. This approach opens an avenue for establishing a telomerase activity determination and in situ monitoring technique that can facilitate both telomerase fundamental biological studies and cancer diagnostics
    corecore