3 research outputs found

    A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Solar Cells

    No full text
    Printable mesoscopic perovskite solar cells (PMPSCs) have exhibited great attractive prospects in the energy conversion field due to their high stability and potential scalability. However, the thick perovskite film in the mesoporous layers challenges the charge transportation and increase grain boundary defects, limiting the performance of the PMPSCs. It is critical not only to improve the electric property of the perovskite film but also to passivate the charge traps to improve the device performance. Herein we synthesized a bis-adduct 2,5-(dimethyl ester) C<sub>60</sub> fulleropyrrolidine (bis-DMEC<sub>60</sub>) via a rational molecular design and incorporated it into the PMPSCs. The enhanced chemical interactions between perovskite and bis-DMEC<sub>60</sub> improve the conductivity of the perovskite film as well as elevate the passivation effect of bis-DMEC<sub>60</sub> at the grain boundaries. As a result, the fill factor (FF) and power conversion efficiency (PCE) of the PMPSCs containing bis-DMEC<sub>60</sub> reached 0.71 and 15.21%, respectively, significantly superior to the analogous monoadduct derivative (DMEC<sub>60</sub>)-containing and control devices. This work suggests that fullerene derivatives with multifunctional groups are promising for achieving high-performance PMPSCs

    Evidence for Aggregation-Induced Emission from Free Rotation Restriction of Double Bond at Excited State

    No full text
    This paper reports that <i>cis</i>-TPE dicycles emit strong fluorescence, while the <i>gem</i> dicycles show almost no emission in solution, demonstrating that the free rotation restriction of the double bond at the excited state is the key factor for AIE effects

    Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells

    No full text
    Work function of carbon electrodes is critical in obtaining high open-circuit voltage as well as high device performance for carbon-based perovskite solar cells. Herein, we propose a novel strategy to upshift work function of carbon electrode by incorporating boron atom into graphite lattice and employ it in printable hole-conductor-free mesoscopic perovskite solar cells. The high-work-function boron-doped carbon electrode facilitates hole extraction from perovskite as verified by photoluminescence. Meanwhile, the carbon electrode is endowed with an improved conductivity because of a higher graphitization carbon of boron-doped graphite. These advantages of the boron-doped carbon electrode result in a low charge transfer resistance at carbon/perovskite interface and an extended carrier recombination lifetime. Together with the merit of both high work function and conductivity, the power conversion efficiency of hole-conductor-free mesoscopic perovskite solar cells is increased from 12.4% for the pristine graphite electrode-based cells to 13.6% for the boron-doped graphite electrode-based cells with an enhanced open-circuit voltage and fill factor
    corecore