3,427 research outputs found

    Admissibility in Finitely Generated Quasivarieties

    Get PDF
    Checking the admissibility of quasiequations in a finitely generated (i.e., generated by a finite set of finite algebras) quasivariety Q amounts to checking validity in a suitable finite free algebra of the quasivariety, and is therefore decidable. However, since free algebras may be large even for small sets of small algebras and very few generators, this naive method for checking admissibility in \Q is not computationally feasible. In this paper, algorithms are introduced that generate a minimal (with respect to a multiset well-ordering on their cardinalities) finite set of algebras such that the validity of a quasiequation in this set corresponds to admissibility of the quasiequation in Q. In particular, structural completeness (validity and admissibility coincide) and almost structural completeness (validity and admissibility coincide for quasiequations with unifiable premises) can be checked. The algorithms are illustrated with a selection of well-known finitely generated quasivarieties, and adapted to handle also admissibility of rules in finite-valued logics

    Coherence in Modal Logic

    Get PDF
    A variety is said to be coherent if the finitely generated subalgebras of its finitely presented members are also finitely presented. In a recent paper by the authors it was shown that coherence forms a key ingredient of the uniform deductive interpolation property for equational consequence in a variety, and a general criterion was given for the failure of coherence (and hence uniform deductive interpolation) in varieties of algebras with a term-definable semilattice reduct. In this paper, a more general criterion is obtained and used to prove the failure of coherence and uniform deductive interpolation for a broad family of modal logics, including K, KT, K4, and S4

    Admissibility via Natural Dualities

    Get PDF
    It is shown that admissible clauses and quasi-identities of quasivarieties generated by a single finite algebra, or equivalently, the quasiequational and universal theories of their free algebras on countably infinitely many generators, may be characterized using natural dualities. In particular, axiomatizations are obtained for the admissible clauses and quasi-identities of bounded distributive lattices, Stone algebras, Kleene algebras and lattices, and De Morgan algebras and lattices.Comment: 22 pages; 3 figure

    Admissibility in De Morgan algebras

    Get PDF
    Characterizations of admissible quasi-identities, which may be understood as quasi-identities holding in free algebras on countably infinitely many generators, are provided for classes of De Morgan algebras and lattice

    Model completions for universal classes of algebras: necessary and sufficient conditions

    Get PDF
    Necessary and sufficient conditions are presented for the (first-order) theory of a universal class of algebraic structures (algebras) to admit a model completion, extending a characterization provided by Wheeler. For varieties of algebras that have equationally definable principal congruences and the compact intersection property, these conditions yield a more elegant characterization obtained (in a slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain further assumptions on congruence lattices, the existence of a model completion implies that the variety has equationally definable principal congruences. This result is then used to provide necessary and sufficient conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras. Notably, if the theory of a Hamiltonian variety of pointed residuated lattices admits a model completion, it must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava, respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with a binary operation in order to obtain theories that do have a model completion.Comment: 32 page

    Algebraic semantics for one-variable lattice-valued logics

    Full text link
    The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property

    Particle Swarm Optimization—An Adaptation for the Control of Robotic Swarms

    Get PDF
    Particle Swarm Optimization (PSO) is a numerical optimization technique based on the motion of virtual particles within a multidimensional space. The particles explore the space in an attempt to find minima or maxima to the optimization problem. The motion of the particles is linked, and the overall behavior of the particle swarm is controlled by several parameters. PSO has been proposed as a control strategy for physical swarms of robots that are localizing a source; the robots are analogous to the virtual particles. However, previous attempts to achieve this have shown that there are inherent problems. This paper addresses these problems by introducing a modified version of PSO, as well as introducing new guidelines for parameter selection. The proposed algorithm links the parameters to the velocity and acceleration of each robot, and demonstrates obstacle avoidance. Simulation results from both MATLAB and Gazebo show close agreement and demonstrate that the proposed algorithm is capable of effective control of a robotic swarm and obstacle avoidance
    • …
    corecore