9,896 research outputs found
The rotating wave system-reservoir coupling: limitations and meaning in the non-Markovian regime
This paper deals with the dissipative dynamics of a quantum harmonic
oscillator interacting with a bosonic reservoir. The Master Equations based on
the Rotating Wave and on the Feynman-Vernon system--reservoir couplings are
compared highlighting differences and analogies. We discuss quantitatively and
qualitatively the conditions under which the counter rotating terms can be
neglected. By comparing the analytic solution of the heating function relative
to the two different coupling models we conclude that, even in the weak
coupling limit, the counter rotating terms give rise to a significant
contribution in the non--Markovian short time regime. The main result of this
paper is that such a contribution is actually experimentally measurable and
thus relevant for a correct description of the system dynamics.Comment: 14 pages, 3 figure
Interaction of bimodal fields with few-level atoms in cavities and traps
The spectacular experimental results of the last few years in cavity quantum
electrodynamics and trapped ions research has led to very high level laboratory
performances. Such a stimulating situation essentially stems from two decisive
advancements. The first is the invention of reliable protocols for the
manipulation of single atoms. The second is the ability to produce desired
bosonic environments on demand. These progresses have led to the possibility of
controlling the form of the coupling between individual atoms and an arbitrary
number of bosonic modes. As a consequence, fundamental matter-radiation
interaction models like, for instance, the JC model and most of its numerous
nonlinear multiphoton generalizations, have been realized or simulated in
laboratory and their dynamical features have been tested more or less in
detail. This topical paper reviews the state of the art of the theoretical
investigations and of the experimental observations concerning the dynamical
features of the coupling between single few-level atoms and two bosonic modes.
In the course of the paper we show that such a configuration provides an
excellent platform for investigating various quantum intermode correlation
effects tested or testable in the cavity quantum electrodynamics and trapped
ion experimental realms. In particular we discuss a mode-mode correlation
effect appearing in the dynamics of a two-level atom quadratically coupled to
two bosonic modes. This effect, named parity effect, consists in a high
sensitivity to the evenness or oddness of the total number of bosonic
excitations.Comment: Topical Review. To appear on J. Mod. Op
Loss induced collective subradiant Dicke behaviour in a multiatom sample
The exact dynamics of two-level atoms coupled to a common electromagnetic
bath and closely located inside a lossy cavity is reported. Stationary
radiation trapping effects are found and very transparently interpreted in the
context of our approach. We prove that initially injecting one excitation only
in the atoms-cavity system, loss mechanisms asymptotically drive the matter
sample toward a long-lived collective subradiant Dicke state. The role played
by the closeness of the atoms with respect to such a cooperative behavior
is brought to light and carefully discussed.Comment: 14 pages, 6 figures, submitted to EPJ
Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case
We present a study on the determination of rotation periods (P) of solar-like
stars from the photometric irregular time-sampling of the ESA Gaia mission,
currently scheduled for launch in 2013, taking into account its dependence on
ecliptic coordinates. We examine the case of solar-twins as well as thousands
of synthetic time-series of solar-like stars rotating faster than the Sun. In
the case of solar twins we assume that the Gaia unfiltered photometric passband
G will mimic the variability of the total solar irradiance (TSI) as measured by
the VIRGO experiment. For stars rotating faster than the Sun, light-curves are
simulated using synthetic spectra for the quiet atmosphere, the spots, and the
faculae combined by applying semi-empirical relationships relating the level of
photospheric magnetic activity to the stellar rotation and the Gaia
instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase
Dispersion Minimisation methods in recovering the correct rotation periods are
tested and compared. The false alarm probability (FAP) is computed using Monte
Carlo simulations and compared with analytical formulae. The Gaia scanning law
makes the rate of correct detection of rotation periods strongly dependent on
the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct
detection increases with ecliptic latitude from 20-30 per cent at beta ~
0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below
10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is
quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA
Impact of photometric variability on age and mass determination of Young Stellar Objects: A case study on Orion Nebula Cluster
In case of pre-main sequence objects, the only way to determine age and mass
is by fitting theoretical isochrones on color-magnitude (alternatively
luminosity-temperature) diagrams. Since young stellar objects exhibit
photometric variability over wide range in magnitude and colors, the age and
mass determined by fitting isochrones is expected to be inaccurate, if not
erroneous. These in turn will badly affect any study carried out on age spread
and process of star formation. Since we have carried out very extensive
photometric observations of the Orion Nebula Cluster (ONC), we decided to use
our multi-band data to explore the influence of variability in determining mass
and age of cluster members. In this study, we get the amplitudes of the
photometric variability in V, R, and I optical bands of a sample of 346 ONC
members and use it to investigate how the variability affects the inferred
masses and ages and if it alone can take account for the age spread among the
ONC members reported by earlier studies. We find that members that show
periodic and smooth photometric rotational modulation have their masses and
ages unaffected by variability. On other hand, we found that members with
periodic but very scattered photometric rotational modulation and members with
irregular variability have their masses and ages significantly affected.
Moreover, using Hertzsprung-Russell (HR) diagrams we find that the observed I
band photometric variability can take account of only a fraction (about 50%) of
the inferred age spread, whereas the V band photometric variability is large
enough to mask any age spread.Comment: Accepted by MNRAS; 17 pages, 4 Tables, 15 Figure
Quantum theory of heating of a single trapped ion
The heating of trapped ions due to the interaction with a {\it quantized
environment} is studied {\it without performing the Born-Markov approximation}.
A generalized master equation local in time is derived and a novel theoretical
approach to solve it analytically is proposed. Our master equation is in the
Lindblad form with time dependent coefficients, thus allowing the simulation of
the dynamics by means of the Monte Carlo Wave Function (MCWF) method.Comment: 4 pages, 3 figure
Misbelief and misunderstandings on the non--Markovian dynamics of a damped harmonic oscillator
We use the exact solution for the damped harmonic oscillator to discuss some
relevant aspects of its open dynamics often mislead or misunderstood. We
compare two different approximations both referred to as Rotating Wave
Approximation. Using a specific example, we clarify some issues related to
non--Markovian dynamics, non--Lindblad type dynamics, and positivity of the
density matrix.Comment: 6 pages, 2 figures, added info: submitted to J. Opt. B: Quantum and
Semiclass. Opt., Special Issue of the 10th Central European Workshop on
Quantum Optics, reference added, discussion clarifie
Stationary entanglement induced by dissipation
The dynamics of two two-level dipole-dipole interacting atoms coupled to a
common electromagnetic bath and closely located inside a lossy cavity, is
reported. Initially injecting only one excitation in the two atoms-cavity
system, loss mechanisms asymptotically drive the matter sample toward a
stationary maximally entangled state. The role played by the closeness of the
two atoms with respect to such a cooperative behaviour is carefully discussed.
Stationary radiation trapping effects are found and transparently interpreted.Comment: 1 figure, submitted to Phys. Rev. Let
Dynamics of a particle confined in a two-dimensional dilating and deforming domain
Some recent results concerning a particle confined in a one-dimensional box
with moving walls are briefly reviewed. By exploiting the same techniques used
for the 1D problem, we investigate the behavior of a quantum particle confined
in a two-dimensional box (a 2D billiard) whose walls are moving, by recasting
the relevant mathematical problem with moving boundaries in the form of a
problem with fixed boundaries and time-dependent Hamiltonian. Changes of the
shape of the box are shown to be important, as it clearly emerges from the
comparison between the "pantographic", case (same shape of the box through all
the process) and the case with deformation.Comment: 13 pages, 2 figure
- …