378 research outputs found

    Overwinter Changes in Dry Aggregate Size Distribution Influencing Wind Erodibility in a Spring Wheat-Summerfallow Cropping System

    Get PDF
    A long-term study of the wind erodibility properties of a two-year spring wheat-summerfallow cropping systems was started in 1988 in south-central North Dakota as part of an USDA-ARS led effort to construct a process-oriented soil erosion predictive model. Observations were conducted on a conservation tillage experiment established in 1984 on soil classified in the U.S. as Typic-Pachic Haploborolls and in Canada as Brown to Dark Brown Chenozemic. The experiment included four residue-management treatments defined by targeted residue coverages: no-till, \u3e 60% cover; minimal-till, 30% to 60% cover and undercutter dominated; conventional-till, \u3c 30% cover and disk dominated; low-residue, \u3c 5 % cover. Fall and spring measurements of dry aggregate size distribution (ASD) of surface soil (0 to 4 cm depth), and overwinter changes in ASD are reported here. A rotary sieve produced six size fractions ranging from \u3c 0.42 mm to \u3e 19.2 mm diameter. Measurements of ASD are expressed as geometric mean diameter (GMD) or erodible fraction (EF: fraction \u3c 0.84 mm). Two major influences on overwinter changes in ASD were observed: (i) During the drier part of a multiyear weather cycle (1988 to 1990), disaggregative changes were observed, with a lowering of GMDs and an increase in EFs. Wetter years (1991 to 1993) brought mixed to aggregative ASD changes. (ii) The phase of the 21-month fallow period strongly affected overwinter ASD change, with large, aggregative changes (GMD up, EF down) observed over the first winter of the fallow period (stubble phase) and mixed aggregative to disaggregative changes observed in the second winter of fallow (residue phase). Tillage treatments had little apparent effect on overwinter ASD changes. Single and multiple regressions indicate that various factors would associate with significant fractions of variance in overwinter GMD change: (i) weather factors - (a) number of days with snowcover, (b) number of freeze-thaw cycles, and (c) precipitation in the fall; (ii) crop growth in years before the year of fallow; (iii) phase of the fallow period; and (iv) GMD level in the fall

    Automating PTSD Diagnostics in Clinical Interviews: Leveraging Large Language Models for Trauma Assessments

    Full text link
    The shortage of clinical workforce presents significant challenges in mental healthcare, limiting access to formal diagnostics and services. We aim to tackle this shortage by integrating a customized large language model (LLM) into the workflow, thus promoting equity in mental healthcare for the general population. Although LLMs have showcased their capability in clinical decision-making, their adaptation to severe conditions like Post-traumatic Stress Disorder (PTSD) remains largely unexplored. Therefore, we collect 411 clinician-administered diagnostic interviews and devise a novel approach to obtain high-quality data. Moreover, we build a comprehensive framework to automate PTSD diagnostic assessments based on interview contents by leveraging two state-of-the-art LLMs, GPT-4 and Llama-2, with potential for broader clinical diagnoses. Our results illustrate strong promise for LLMs, tested on our dataset, to aid clinicians in diagnostic validation. To the best of our knowledge, this is the first AI system that fully automates assessments for mental illness based on clinician-administered interviews

    Understanding Schools and Schooling. (Book Review)

    Get PDF
    A review of a book written by Clive Chitty (2002 with a useful focus on issues of equity and social justice, including prejudice, discrimination and bullying in secondary schools. Education policy makers need to explore the extent to which it is important to produce interested, motivated and socially balanced young adults. It is well researched and documented

    Hereditary transthyretin amyloidosis: baseline characteristics of patients in the NEURO-TTR trial

    Get PDF
    Background: Hereditary transthyretin (ATTRm) amyloidosis is a rare, progressive and fatal disease with a range of clinical manifestations.Objective: This study comprehensively evaluates disease characteristics in a large, diverse cohort of patients with ATTRm amyloidosis.Methods: Adult patients (N = 172) with Stage 1 or Stage 2 ATTRm amyloidosis who had polyneuropathy were screened and enrolled across 24 investigative sites and 10 countries in the NEURO-TTR trial (www.clinicaltrials.gov, NCT01737398). Medical and disease history, quality of life, laboratory data, and clinical assessments were analyzed.Results: The NEURO-TTR patient population was diverse in age, disease severity, TTR mutation, and organ involvement. Twenty-seven different TTR mutations were present, with Val30Met being the most common (52%). One third of patients reported early onset disease (before age 50) and the average duration of neuropathy symptoms was 5.3 years. Symptoms affected multiple organs and systems, with nearly 70% of patients exhibiting broad involvement of weakness, sensory loss, and autonomic disturbance. Over 60% of patients had cardiomyopathy, with highest prevalence in the United States (72%) and lowest in South America/Australasia (33%). Cardiac biomarker NT-proBNP correlated with left ventricular wall thickness (p<.001). Quality of life, measured by Norfolk QoL-DN and SF-36 patient-reported questionnaires, was significantly impaired and correlated with disease severity.Conclusions: Baseline data from the NEURO-TTR trial demonstrates ATTRm amyloidosis as a systemic disease with deficits in multiple organs and body systems, leading to decreased quality of life. We report concomitant presentation of polyneuropathy and cardiomyopathy in most patients, and early involvement of multiple body systems

    Dimorphos's Orbit Period Change and Attitude Perturbation due to Its Reshaping after the DART Impact

    Get PDF
    On 2022 September 26 (UTC), NASA's Double Asteroid Redirection Test (DART) mission achieved a successful impact on Dimorphos, the secondary component of the near-Earth binary asteroid system (65803) Didymos. Subsequent ground-based observations suggest a significant reshaping of Dimorphos, with its equatorial axis ratio changing from 1.06 to ∼1.3. Here we report the effects of this reshaping event on Dimorphos's orbit and attitude. Given the reported reshaping magnitude, our mutual dynamics simulations show that approximately 125 s of the observed 33 minute orbit period change after the DART impact may have resulted from reshaping. This value, however, is sensitive to the precise values of Dimorphos's post-impact axis ratios and may vary by up to 2 times that amount, reaching approximately 250 s within the current uncertainty range. While the rotational state of the body is stable at the currently estimated axis ratios, even minor changes in these ratios or the introduction of shape asymmetry can render its attitude unstable. The perturbation to Dimorphos's orbital and rotational state delivered by the impact directly, combined with any reshaping, leads to a strong possibility for a tumbling rotation state. To accurately determine the momentum enhancement factor (β) through measurements by the European Space Agency's Hera spacecraft and to evaluate the effectiveness of the kinetic deflection technique for future planetary defense initiatives, the effects of reshaping should not be overlooked.This work was supported in part by the DART mission, NASA contract 80MSFC20D0004 to JHU/APL. R.N. acknowledges support from NASA/FINESST (NNH20ZDA001N). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project number 200021_207359). P.M. acknowledges funding support from the French Space Agency CNES and The University of Tokyo. P.P. acknowledges support from the grant Agency of the Czech Republic, grant 23-04946S. S.R.S. acknowledges support from the DART Participating Scientist Program, grant No. 80NSSC22K0318. A.C.B. and P.Y.L. acknowledge funding by the NEO-MAPP project 717 GA 870377, EC H2020-SPACE-718 2018-2020/H2020-SPACE-2019, and by MICINN (Spain) PGC2021, PID2021-125883NB-C21. P.Y.L. acknowledges funding from the European Space Agency OSIP contract N.4000136043/21/NL/GLC/my. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (No. 80NM0018D0004)

    Local Spatial and Temporal Processes of Influenza in Pennsylvania, USA: 2003–2009

    Get PDF
    Background: Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health's influenza surveillance system. Methodology and Findings: We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003-2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic. Conclusions: These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs. © 2012 Stark et al

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )

    Inotersen treatment for patients with hereditary transthyretin amyloidosis

    Get PDF
    BACKGROUND: Hereditary transthyretin amyloidosis is caused by pathogenic single-nucleotide variants in the gene encoding transthyretin ( TTR) that induce transthyretin misfolding and systemic deposition of amyloid. Progressive amyloid accumulation leads to multiorgan dysfunction and death. Inotersen, a 2'- O-methoxyethyl-modified antisense oligonucleotide, inhibits hepatic production of transthyretin. METHODS: We conducted an international, randomized, double-blind, placebo-controlled, 15-month, phase 3 trial of inotersen in adults with stage 1 (patient is ambulatory) or stage 2 (patient is ambulatory with assistance) hereditary transthyretin amyloidosis with polyneuropathy. Patients were randomly assigned, in a 2:1 ratio, to receive weekly subcutaneous injections of inotersen (300 mg) or placebo. The primary end points were the change in the modified Neuropathy Impairment Score+7 (mNIS+7; range, -22.3 to 346.3, with higher scores indicating poorer function; minimal clinically meaningful change, 2 points) and the change in the score on the patient-reported Norfolk Quality of Life-Diabetic Neuropathy (QOL-DN) questionnaire (range, -4 to 136, with higher scores indicating poorer quality of life). A decrease in scores indicated improvement. RESULTS: A total of 172 patients (112 in the inotersen group and 60 in the placebo group) received at least one dose of a trial regimen, and 139 (81%) completed the intervention period. Both primary efficacy assessments favored inotersen: the difference in the least-squares mean change from baseline to week 66 between the two groups (inotersen minus placebo) was -19.7 points (95% confidence interval [CI], -26.4 to -13.0; P<0.001) for the mNIS+7 and -11.7 points (95% CI, -18.3 to -5.1; P<0.001) for the Norfolk QOL-DN score. These improvements were independent of disease stage, mutation type, or the presence of cardiomyopathy. There were five deaths in the inotersen group and none in the placebo group. The most frequent serious adverse events in the inotersen group were glomerulonephritis (in 3 patients [3%]) and thrombocytopenia (in 3 patients [3%]), with one death associated with one of the cases of grade 4 thrombocytopenia. Thereafter, all patients received enhanced monitoring. CONCLUSIONS: Inotersen improved the course of neurologic disease and quality of life in patients with hereditary transthyretin amyloidosis. Thrombocytopenia and glomerulonephritis were managed with enhanced monitoring. (Funded by Ionis Pharmaceuticals; NEURO-TTR ClinicalTrials.gov number, NCT01737398 .)
    corecore