11 research outputs found

    Visual tracking with online assessment and improved sampling strategy

    Get PDF
    The kernelized correlation filter (KCF) is one of the most successful trackers in computer vision today. However its performance may be significantly degraded in a wide range of challenging conditions such as occlusion and out of view. For many applications, particularly safety critical applications (e.g. autonomous driving), it is of profound importance to have consistent and reliable performance during all the operation conditions. This paper addresses this issue of the KCF based trackers by the introduction of two novel modules, namely online assessment of response map, and a strategy of combining cyclically shifted sampling with random sampling in deep feature space. A method of online assessment of response map is proposed to evaluate the tracking performance by constructing a 2-D Gaussian estimation model. Then a strategy of combining cyclically shifted sampling with random sampling in deep feature space is presented to improve the tracking performance when the tracking performance is assessed to be unreliable based on the response map. Therefore, the module of online assessment can be regarded as the trigger for the second module. Experiments verify the tracking performance is significantly improved particularly in challenging conditions as demonstrated by both quantitative and qualitative comparisons of the proposed tracking algorithm with the state-of-the-art tracking algorithms on OTB-2013 and OTB-2015 datasets

    Thermal infrared single-pedestrian tracking for advanced driver assistance system

    No full text
    Tracking algorithms with low computational complexity and reliable performance are important in developing advanced driver assistance systems (DAS). This paper proposes a method of single-pedestrian tracking using thermal infrared cameras to meet the needs of DAS operating in nighttime and low-visibility conditions. The proposed algorithm uses the background-aware correlation filter (BACF) as the basic tracking framework. In order to address the problem that directly introducing the convolutional features leads to tracking performance degradation in the BACF framework, this paper proposes a fusion scheme to integrate handcrafted and convolutional features to make full use of the advantages of both the features. The proposed scheme combines response maps from convolutional and handcrafted features through fusion coefficients to improve the performance of the trackers based on the single features. In order to calculate fusion coefficients, a novel approach of searching the main peak and interference peaks of a response map is proposed by using local binary pattern values of the response map to locate all local maximum points. Experimental results show that the proposed algorithm outperforms the existing 9 competing tracking algorithms and can be used in vehicle platforms as a module of DAS to improve the safe level of driving in nighttime

    MOESM1 of Distinct expression profile of HCMV encoded miRNAs in plasma from oral lichen planus patients

    No full text
    Additional file 1. Additional method. Quantification of miRNAs by TaqMan probe-based RT-qPCR. Figure S1. Cq Values of U6 in plasma samples from 61 OLP patients and 51 healthy controls. Figure S2. Standard curves of 5 HCMV encoded miRNAs. Figure S3. Standard curve of recombinant plasmid that contained the HCMV target sequence. Figure S4. The overexpression efficiency of hcmv-miR-UL59 in HEK293 cells. Figure S5. The relative expression levels of hcmv-miR-UL59 in plasma exosome, RNase H treated exosome and Triton/RNase H treated exosome. Table S1. The relative expression levels of HCMV-encoded miRNAs in OLP patients and normal controls in the validation set. Table S2. The relative expression levels of HCMV-encoded miRNAs in OLP patients and normal controls. Table S3. The relative expression levels of HCMV-encoded miRNAs in the two different types of OLP patients and normal controls. Table S4. Univariate and multivariate logistic regression analyses of plasma HCMV miRNAs for OLP. Table S5. Targets of HCMV-encoded miRNAs

    High-Performance Membrane Capacitive Deionization Based on Metal−Organic Framework-Derived Hierarchical Carbon Structures

    No full text
    Membrane capacitive deionization (MCDI) is a simple and highly energy efficient method to convert brackish water to clean water. In this work, a high-performance MCDI electrode architecture, which is composed of three-dimensional graphene networks and metal–organic frameworks (MOFs)–derived porous carbon rods, was prepared by a facile method. The obtained electrode material possesses not only the conducting networks for rapid electron transport but also the short diffusion length of ions, which exhibits excellent desalination performance with a high salt removal capacity, i.e., 37.6 mg g<sup>–1</sup> at 1.2 V in 1000 mg L<sup>–1</sup> NaCl solution. This strategy can be extended to other MOF-derived MCDI electrodes

    DataSheet_1_Altered serum human cytomegalovirus microRNA levels are common and closely associated with the inflammatory status in patients with fever.zip

    No full text
    BackgroundFever has a complicated etiology, and diagnosing its causative factor is clinically challenging. Human cytomegalovirus (HCMV) infection causes various diseases. However, the clinical relevance, prevalence, and significance of HCMV microRNAs (miRNA) in association with fever remain unclear. In the present study, we analyzed the HCMV miRNA expression pattern in the serum of patients with fever and evaluate its clinical associations with occult HCMV infection status in immune disorders.MethodsWe included serum samples from 138 patients with fever and 151 age-gender-matched controls in this study. First, the serum levels of 24 HCMV miRNAs were determined using a hydrolysis probe-based stem-loop quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay in the training set. The markedly altered miRNAs were verified in the validation and testing sets. The serum HCMV IgG/IgM and DNA titers in the testing cohort were also assessed using enzyme-linked immunosorbent assay (ELISA) and RT-qPCR, respectively.ResultsThe majority of HCMV miRNAs were markedly upregulated in the serum of fever patients. We selected the five most significantly altered HCMV miRNAs: hcmv-miR-US4-3p, hcmv-miR-US29-3p, hcmv-miR-US5-2-3p, hcmv-miR-UL112-3p, and hcmv-miR-US33-3p for validation. These miRNAs were also significantly elevated in the serum of fever patients in the validation and testing sets compared with the controls. Logistic regression analysis revealed that the five miRNAs were novel potential risk factors for fever. Notably, the serum levels of four of the five confirmed HCMV miRNAs were significantly associated with blood C-reaction protein concentrations. Moreover, the five HCMV miRNA levels were closely correlated with the HCMV DNA titers in the testing cohort.ConclusionHCMV infection and activation are common in fever patients and could be novel risk factors for fever. These differentially expressed HCMV miRNAs could enable HCMV activation status monitoring in immune disorders.</p

    A Robust Pyro-phototronic Route to Markedly Enhanced Photocatalytic Disinfection

    No full text
    Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties

    Additional file 5: Figure S3. of The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer

    No full text
    HuR functions as an oncogene in CRC. (a-c) HuR promoted SW480 proliferation. a: CCK-8 assays; b and c: EdU assays. (d and e) HuR promoted SW480 migration. (f-h) HuR accelerated CRC xenografted tumour growth. f: Photos of CRC tumours; g: Tumour volume curves; h: Tumour weights. (i) Western blot analysis of HuR levels in CRC xenografted tumours. (j and k) HE staining and IHC staining for HuR and Ki-67 in xenografted tumours. **P < 0.01; ***P < 0.001. (TIFF 5991 kb

    Additional file 6: Figure S4. of The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer

    No full text
    (a and b) The Kaplan-Meier curve revealed the positive correlation of miR-22 (a) or miR-129 (b) level and CRC patients’ survival. (c and d) The transfection efficiencies of miR-22 (c) or miR-129 (d) mimics or inhibitors in 3 CRC cell lines. ***P < 0.001. (TIFF 1147 kb

    Additional file 3: Figure S1. of The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer

    No full text
    HuR protein is significantly upregulated in CRC tissues and negatively correlated with CRC patient survival. (a) HuR levels in normal colon, normal rectum, colon adenocarcinoma and rectal adenocarcinoma in the TCGA dataset analysed by Oncomine. (b) Kaplan-Meier curve showing the negative correlation of HuR level and CRC patients’ survival. (TIFF 167 kb
    corecore