3 research outputs found

    Synthesis, Rotational Dynamics, and Photophysical Characterization of a Crystalline Linearly Conjugated Phenyleneethynylene Molecular Dirotor

    No full text
    We report the synthesis, crystal structure, solid-state dynamics, and photophysical properties of 6,13-bis­((4-(3-(3-methoxyphenyl)-3,3-diphenylprop-1-yn-1-yl)­phenyl)­ethynyl)-5,7,12,14-tetrahydro-5,14:7,12-bis­([1,2]­benzeno)­pentacene (<b>1</b>), a molecular dirotor with a 1,4-bis­((4-ethynylphenyl)­ethynyl)­benzene (BEPEB) chromophore. The incorporation of a pentiptycene into the molecular dirotor provides a central stator and a fixed phenylene ring relative to which the two flanking ethynylphenylene rotators can explore various torsion angles; this allows the BEPEB fluorophore dynamics to persist in the solid state. X-ray diffraction studies have shown that molecular dirotor <b>1</b> is packed so that all the BEPEB fluorophores adopt a parallel alignment, this is ideal for the development of functional materials. Variable temperature, quadrupolar echo <sup>2</sup>H NMR studies have shown that phenylene rotator flipping has an activation energy of 9.0 kcal/mol and a room temperature flipping frequency of ∼2.6 MHz. Lastly, with measurements in solution, glasses, and crystals, we obtained evidence that the fluorescence excitation and emission spectra of the phenyleneethynylene chromophores is dependent on the extent of conjugation between the phenylene rings, as determined by their relative dihedral angles. This work provides a promising starting point for the development of molecular dirotors with polar groups whose amphidynamic nature will allow for the rapid shifting of solid-state absorption, fluorescence, and birefringence, in response to external electric fields

    Synthesis, Rotational Dynamics, and Photophysical Characterization of a Crystalline Linearly Conjugated Phenyleneethynylene Molecular Dirotor

    No full text
    We report the synthesis, crystal structure, solid-state dynamics, and photophysical properties of 6,13-bis­((4-(3-(3-methoxyphenyl)-3,3-diphenylprop-1-yn-1-yl)­phenyl)­ethynyl)-5,7,12,14-tetrahydro-5,14:7,12-bis­([1,2]­benzeno)­pentacene (<b>1</b>), a molecular dirotor with a 1,4-bis­((4-ethynylphenyl)­ethynyl)­benzene (BEPEB) chromophore. The incorporation of a pentiptycene into the molecular dirotor provides a central stator and a fixed phenylene ring relative to which the two flanking ethynylphenylene rotators can explore various torsion angles; this allows the BEPEB fluorophore dynamics to persist in the solid state. X-ray diffraction studies have shown that molecular dirotor <b>1</b> is packed so that all the BEPEB fluorophores adopt a parallel alignment, this is ideal for the development of functional materials. Variable temperature, quadrupolar echo <sup>2</sup>H NMR studies have shown that phenylene rotator flipping has an activation energy of 9.0 kcal/mol and a room temperature flipping frequency of ∼2.6 MHz. Lastly, with measurements in solution, glasses, and crystals, we obtained evidence that the fluorescence excitation and emission spectra of the phenyleneethynylene chromophores is dependent on the extent of conjugation between the phenylene rings, as determined by their relative dihedral angles. This work provides a promising starting point for the development of molecular dirotors with polar groups whose amphidynamic nature will allow for the rapid shifting of solid-state absorption, fluorescence, and birefringence, in response to external electric fields

    Generation and Reactivity Studies of Diarylmethyl Radical Pairs in Crystalline Tetraarylacetones via Laser Flash Photolysis Using Nanocrystalline Suspensions

    No full text
    The nanosecond electronic spectra and kinetics of the radical pairs from various crystalline tetraarylacetones were obtained using transmission laser flash photolysis methods by taking advantage of aqueous nanocrystalline suspensions in the presence of submicellar CTAB, which acts as a surface passivator. After showing that all tetraarylacetones react efficiently by a photodecarbonylation reaction in the crystalline state, we were able to detect the intermediate radical pairs within the ca. 8 ns laser pulse of our laser setup. We showed that the solid-state spectra of the radical pairs are very similar to those detected in solution, with λ<sub>max</sub> in the 330–360 nm range. Kinetics in the solid state was observed to be biexponential and impervious to the presence of oxygen or variations in laser power. A relatively short-lived component (0.3–1.7 μs) accounts for only 3–8% of the total decay with a longer-lived component having a time constant in the range of 40–90 μs depending on the nature of the substituents
    corecore