452 research outputs found

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    Closed forms for certain fibonacci type sums that involve second order products

    Full text link
    In this paper, we present closed forms for certain finite sums in which the summand is a product of generalized Fibonacci numbers. We present our results in the form of six theorems that feature a generalized Fibonacci sequence {Wn}, and an accompanying sequence {Wn}- We add a further layer of generalization to our results with the use of three parameters s, k, and m. The inspiration for this paper comes from a website of Knott that lists so-called order 2 summations involving the Fibonacci and Lucas numbers. Probably the most well-known of these summations is σni=1Fi2=FnFn+1

    Finite sums that involve reciprocals of products of generalized Fibonacci numbers

    Full text link
    © 2014 Walter de Gruyter GmbH, Berlin/Boston. In this paper we find closed forms for certain finite sums. In each case the denominator of the summand consists of products of generalized Fibonacci numbers. Furthermore, we express each closed form in terms of rational numbers

    Sums of certain products of fibonacci & Lucas numbers-part III

    Full text link
    For the Fibonacci numbers, the summation formula σnk=1 Fk2=FnFn+1is well-known. Its charm lies in the fact that the right side is a product of terms from the Fibonacci sequence. In the earlier paper [5], the author presents similar formulas where, in each case, the right side consists of arbitrarily long products of an even number of distinct terms from the Fibonacci sequence. The formulas in question contain several parameters, and this contributes to their generality. In this paper, we provide additional results of a similar nature where the right side consists of arbitrarily long products of an odd number of distinct terms from the Fibonacci sequence. Most of the results that we present apply to a sequence that generalizes both the Fibonacci and Lucas numbers
    • …
    corecore