8 research outputs found

    Bioavailability of methionine-coated zinc nanoparticles as a dietary supplement leads to improved performance and bone strength in broiler chicken production

    Get PDF
    Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds

    Supramolecular chromatographic separation of C60 and C70 fullerenes: flash column chromatography vs. high pressure liquid chromatography

    No full text
    A silica-bound C-butylpyrogallol[4]arene chromatographic stationary phase was prepared and characterised by thermogravimetric analysis, scanning electron microscopy, NMR and mass spectrometry. The chromatographic performance was investigated by using C(60) and C(70) fullerenes in reverse phase mode via flash column and high-pressure liquid chromatography (HPLC). The resulting new stationary phase was observed to demonstrate size-selective molecular recognition as postulated from our in-silico studies. The silica-bound C-butylpyrogallol[4]arene flash and HPLC stationary phases were able to separate a C(60)- and C(70)-fullerene mixture more effectively than an RP-C(18) stationary phase. The presence of toluene in the mobile phase plays a significant role in achieving symmetrical peaks in flash column chromatography

    Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for production of Biocompatible Gold Nanoparticles

    Get PDF
    Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve a dual role as effective reducing agents to reduce gold and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. The tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and T-AuNPs have been found to be non toxic as assessed through MTT assays. No `man made' chemicals, other than gold salts, are used in this truly biogenic, green nanotechnological process thus paving the way for excellent opportunities for their application in molecular imaging and therapy

    Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles

    No full text
    The present study demonstrates an unprecedented green process for the production of gold nanoparticles by simple treatment of gold salts with soybean extracts. Reduction capabilities of antioxidant phytochemicals present in soybean and their ability to reduce gold salts chemically to nanoparticles with subsequent coating of proteins and a host of other phytochemicals present in soybean on the freshly generated gold nanoparticles are discussed. The new genre of green nanoparticles exhibit remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy. The overall strategy described herein for the generation of gold nanoparticles meets all 12 principles of green chemistry, as no "man-made" chemicals, other than the gold salts, are used in the green nanotechnological process
    corecore