3,527 research outputs found
Periodicities in the occurrence of aurora as indicators of solar variability
A compilation of records of the aurora observed in China from the Time of the Legends (2000 - 3000 B.C.) to the mid-18th century has been used to infer the frequencies and strengths of solar activity prior to modern times. A merging of this analysis with auroral and solar activity patterns during the last 200 years provides basically continuous information about solar activity during the last 2000 years. The results show periodicities in solar activity that contain average components with a long period (approx. 412 years), three middle periods (approx. 38 years, approx. 77 years, and approx. 130 years), and the well known short period (approx. 11 years)
Radio Luminosities and Classificatory Criteria of BL Lacertae Objects
Using the sample of radio selected BL Lacertae objects (RBLs) and X-ray
selected BL Lacertae objects (XBLs) presented by Sambruna et al. (1996), we
calculated the luminosities of radio, optical and X-ray of each source and made
the statistical analysis among the luminosities at different wave-bands,
broad-band spectral indices from radio to X-ray () and peak
frequencies (). Our results are as follows: (i) there is a positive
correlation between radio luminosity and and a
negative correlation between and . High-energy peak BL Lacs
(HBLs) and low-energy peak BL Lacs (LBLs) can be distinguished very well, the
dividing lines are probably those of (erg/sec) and
(or )0.75 for - plot and
those of (erg/sec) and for the
- plot; (ii) there is a weak positive correlation between
optical luminosity and and a negatively weak
correlation between and ; (iii) there is no correlation
between X-ray luminosity and or between and
. From our analysis, we find that synchrotron radiation is the main
X-ray radiation mechanism for HBLs while inverse Compton scattering for LBLs.Comment: 9 pages, 3 figures. Submitted to A&
Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process
© 2019 Elsevier Ltd Microplastics (MPs) as new pollutants of environmental concern have been widely detected in sewage sludge, and may act as significant vectors for metal pollutants due to their adsorption property. Our findings show that Cd, Pb, and Co, but not Ni, contents in sewage sludge are lower than that of corresponding metal irons adsorbed on sludge-based MPs, indicating that the MPs accumulate such metal pollutants as Cd in the sludge samples. In contrast to virgin MPs, sludge-based MPs are one order of magnitude higher adsorption capacity for Cd, which reaches up to 2.523 mg g−1, implying that there is a considerable enhancement in adsorption potential of the MPs for metals after the wastewater treatment process. SEM analysis shows that sludge-based MPs have rougher and more porous surface than virgin MPs, and FTIR spectra reveal that functional groups such as C–O and O–H are found on sludge-based MPs. Further, two-dimensional FTIR correlation spectroscopy indicates that C–O and N–H functional groups play a vital role in the process that sludge-based MPs adsorb Cd, which are not found in virgin MPs. The results imply that increased adsorption potentials of the sludge-based MPs to Cd are attributed to changes in the MP physicochemical properties during wastewater treatment process. In addition, such factors as pH value, and sludge inorganic and organic components also have an effect on the MP adsorption to Cd. Principal component analysis shows that the MPs could be divided into three categories, i.e. polyamide, rubbery MPs (polyethylene and polypropylene) and glassy MPs (polyvinyl chloride and polystyrene). Their adsorption potentials to Cd follow the decreasing order: polyamide > rubbery MPs > glassy MPs. In summary, these findings indicate that MPs may exert an important influence on fate and transport of metal pollutants during sewage sludge treatment process, which deserves to be further concerned
Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1) by Diacylglycerol (DAG)
The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1), is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC). However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG) directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG) neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5)P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C
Magnetically-targetable outer-membrane vesicles for sonodynamic eradication of antibiotic-tolerant bacteria in bacterial meningitis
Treatment of acute bacterial meningitis is difficult due to the impermeability of the blood-brain barrier, greatly limiting the antibiotic concentrations that can be achieved in the brain. Escherichia coli grown in presence of iron-oxide magnetic nanoparticles secrete large amounts of magnetic outer-membrane vesicles (OMVs) in order to remove excess Fe from their cytoplasm. OMVs are fully biomimetic nanocarriers, but can be inflammatory. Here, non-inflammatory magnetic OMVs were prepared from an E. coli strain in which the synthesis of inflammatory lipid A acyltransferase was inhibited using CRISPR/Cas9 mediated gene knockout. OMVs were loaded with ceftriaxone (CRO) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) and magnetically driven across the blood-brain barrier for sonodynamic treatment of bacterial meningitis. ROS-generation upon ultrasound application of CRO- and TCPP-loaded OMVs yielded similar ROS-generation as by TCPP in solution. In vitro, ROS-generation by CRO- and TCPP-loaded OMVs upon ultrasound application operated synergistically with CRO to kill a hard-to-kill, CRO-tolerant E. coli strain. In a mouse model of CRO-tolerant E. coli meningitis, CRO- and TCPP-loaded OMVs improved survival rates and clinical behavioral scores of infected mice after magnetic targeting and ultrasound application. Recurrence did not occur for at least two weeks after arresting treatment.</p
Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with Flavor Symmetry
We study the renormalization group running of the tri-bimaximal mixing
predicted by the two typical flavor models at leading order. Although the
textures of the mass matrices are completely different, the evolution of
neutrino mass and mixing parameters is found to display approximately the same
pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum
corrections to both atmospheric and reactor neutrino mixing angles are so small
that they can be neglected. The evolution of the solar mixing angle
depends on and neutrino mass spectrum, the deviation
from its tri-bimaximal value could be large. Taking into account the
renormalization group running effect, the neutrino spectrum is constrained by
experimental data on in addition to the self-consistency
conditions of the models, and the inverted hierarchy spectrum is disfavored for
large . The evolution of light-neutrino masses is approximately
described by a common scaling factor.Comment: 23 pages, 6figure
Sequence Level Analysis of Recently Duplicated Regions in Soybean [Glycine max (L.) Merr.] Genome
A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA′) composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and Jinpumkong 2, single-nucleotide polymorphism and simple sequence repeat marker genotyping were able to locate GmA′ on LG A1. On the basis of information in the Soybean Breeders Toolbox and our results, parts of LG A1 and LG D2 share duplicated regions. Alignment and annotation revealed that many homoeologous regions contained kinases and proteins related to signal transduction pathway. Interestingly, inserted sequences from GmA and GmA′ had homology with transposase and integrase. Estimation of evolutionary events revealed that speciation of soybean from Medicago and the recent divergence of two soybean homoeologous regions occurred at 60 and 12 million years ago, respectively. Distribution of synonymous substitution patterns, Ks, yielded a first secondary peak (mode Ks = 0.10–0.15) followed by two smaller bulges were displayed between soybean homologous regions. Thus, diploidized paleopolyploidy of soybean genome was again supported by our study
Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides
Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 (1) over bar0) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 (1) over bar0) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries
On the Nature of Star Formation at Large Galactic Radii
We have compared far-ultraviolet (FUV), near-ultraviolet (NUV), and Halpha
measurements for star forming regions in 21 galaxies, in order to characterise
the properties of their discs at radii beyond the main optical radius (R25). In
our representative sample of extended and non-extended UV discs we find that
half of the extended UV discs also exhibit extended Halpha emission. We find
that extended UV discs fall into two categories, those with a sharp truncation
in the Halpha disc close to the optical edge (R25), and those with extended
emission in Halpha as well as in the ultraviolet. Although most galaxies with
strong Halpha truncations near R25 show a significant corresponding falloff in
UV emission (factor 10--100), the transition tends to be much smoother than in
Halpha, and significant UV emission often extends well beyond this radius,
confirming earlier results by Thilker et al. (2007) and others. After
correcting for dust attenuation the median fraction of total FUV emission from
regions outside of R25 is 1.7%, but it can be as high as 35% in the most
extreme cases. The corresponding fractions of Halpha emission are approximately
half as large on average. This difference reflects both a slightly lower ratio
of Halpha to UV emission in the HII regions in the outer discs, as well as a
lower fraction of star clusters showing HII regions. Most HII regions in the
extended disc have fluxes consistent with small numbers of ionising O-type
stars, and this poor sampling of the upper initial mass function in small
clusters can probably account for the differences in the emission properties,
consistent with earlier conclusions by Zaritsky & Christlein (2007), without
needing to invoke a significant change in the stellar IMF itself. Consistent
Ha/FUV ratios and brightest HII region to total Halpha fluxes in the inner and
extended discs across our whole galaxy sample demonstrate no evidence for a
change in the cluster luminosity function or the IMF in the low gas density
outer disc.Comment: Accepted for publication in MNRAS. 21 Pages, 13 Figures, 2 Table
- …