619 research outputs found

    Light position locating system Patent

    Get PDF
    Electro-optical detector for determining position of light sourc

    Spatial, High-Accuracy, Positioning-Encoding Sensor (SHAPES) for large space system control applications

    Get PDF
    The Spatial, High-Accuracy, Position-Encoding Sensor is a controls sensor suitable for the determination of the static shape and vibrational motion of large space structures and similar systems and for the determination of position and velocity in rendezvous and docking. It uses a combination of electro-optical techniques to measure the three-dimensional coordinates distributed over the structure at reading rates high compared to the rates at which the coordinates are changing. The technical approach is that of measuring the distance to and the direction of points on the structure from a single sensor head. Many points can be measured simultaneously from a single head without significantly increasing the complexity of the system

    Optical fiber coupling method and apparatus

    Get PDF
    Systems are described for coupling a pair of optical fibers to pass light between them, which enables a coupler to be easily made, and with simple equipment, while closely controlling the characteristics of the coupler. One method includes mounting a pair of optical fibers on a block having a large hole therein, so the fibers extend across the hole while lying adjacent and parallel to one another. The fibers are immersed in an etchant to reduce the thickness of cladding around the fiber core. The fibers are joined together by applying a liquid polymer so the polymer-air interface moves along the length of the fibers to bring the fibers together in a zipper-like manner, and to progressively lay a thin coating of the polymer on the fibers

    Ranging system which compares an object reflected component of a light beam to a reference component of the light beam

    Get PDF
    A system is described for measuring the distance to an object by comparing a first component of a light pulse that is reflected off the object with a second component of the light pulse that passes along a reference path of known length, which provides great accuracy with a relatively simple and rugged design. The reference path can be changed in precise steps so that it has an equivalent length approximately equal to the path length of the light pulse component that is reflected from the object. The resulting small difference in path lengths can be precisely determined by directing the light pulse components into opposite ends of a detector formed of a material that emits a second harmonic light output at the locations where the opposite going pulses past simultaneously across one another

    Centennial-scale reductions in nitrogen availability in temperate forests of the United States

    Get PDF
    Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into theforeseeable future, further constraining forest C fixation and potentially storage

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Broad anti-hepatitis C virus (HCV) antibody responses are associated with improved clinical disease parameters in chronic HCV infection

    Get PDF
    During hepatitis C virus (HCV) infection broadly neutralizing antibody (bNAb) responses targeting E1E2 envelope glycoproteins are generated in many individuals. It is unclear if these antibodies play a protective or a pathogenic role during chronic infection. In this study, we investigated whether bNAb responses in individuals with chronic infection were associated with differences in clinical presentation. Patient-derived purified serum IgG was used to assess the breadth of HCV E1E2 binding and neutralization activity of HCV pseudoparticles. Two panels were compared, bearing viral envelope proteins representing either an inter-genotype or an intra-genotype (gt) 1 group. We found that HCV viral load was negatively associated with strong cross-genotypic E1E2 binding (P=0.03). Overall we observed only modest correlation between total E1E2 binding and neutralizing ability. The breadth of inter-genotype neutralization did not correlate with any clinical parameters, however, analysis of individuals with gt 1 HCV infection (n=20), using an intra-genotype pseudoparticle panel, found a strong association between neutralization breadth and reduced liver fibrosis (P=0.006). Broad bNAb response in our chronic cohort was associated with a single nucleotide polymorphism (SNP) in the HLA-DQB1 gene (P=0.038) as previously reported in an acute cohort. Furthermore bNAbs in these individuals targeted more than one region of E2 neutralizing epitopes as assessed through cross-competition of patient bNAbs with well-characterized E2 antibodies. We conclude that bNAb responses in chronic gt1 infection are associated with lower rates of fibrosis and host genetics may play a role in the ability to raise such responses. IMPORTANCE: Globally there are 130-150 million people with chronic HCV infection. Typically the disease is progressive and is a major cause of severe liver cirrhosis and hepatocellular carcinoma. While it is known that neutralizing antibodies have a role in spontaneous clearance during acute infection, little is known about their role in chronic infection. In the present work we investigate the antibody response in a cohort of chronically infected individuals and find that a broad neutralizing antibody response is protective, with reduced levels of liver fibrosis and cirrhosis. We also find an association with SNPs in class II HLA genes and the presence of a broad neutralizing response indicating that antigen presentation may be important for production of HCV neutralizing antibodies

    Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil

    Get PDF
    Background: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. Methodology/Principal findings: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. Conclusions/Significance: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions
    • …
    corecore