27 research outputs found
Automation and robotics considerations for a lunar base
An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment
Signal Transmission in the Auditory System
Contains table of contents for Section 3, an introduction and reports on seven research projects.National Institutes of Health Grant P01-DC-00119National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract N01-DC2240
Signal Transmission in the Auditory System
Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant RO1-DC-00194-11National Institutes of Health Grant PO1-DC00119 Sub-Project 1National Institutes of Health Grant F32-DC00073-3National Institutes of Health Contract P01-DC00119National Institutes of Health Grant R01 DC00238National Institutes of Health Grant P01-DC00119National Institutes of Health Grant T32-DC00038National Institutes of Health Contract P01-DC00361National Institutes of Health Grant R01-DC00235National Institutes of Health Contract NO1-DC2240
Genome-Wide Association of Bipolar Disorder Suggests an Enrichment of Replicable Associations in Regions near Genes
Although a highly heritable and disabling disease, bipolar disorder's (BD) genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5 x 10(-7)). To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (+/- 10 kb) that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies
