2,011 research outputs found
Globular Cluster Abundances from High-Resolution, Integrated-Light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques
We present abundances of globular clusters in the Milky Way and Fornax from
integrated light spectra. Our goal is to evaluate the consistency of the
integrated light analysis relative to standard abundance analysis for
individual stars in those same clusters. This sample includes an updated
analysis of 7 clusters from our previous publications and results for 5 new
clusters that expand the metallicity range over which our technique has been
tested. We find that the [Fe/H] measured from integrated light spectra agrees
to 0.1 dex for globular clusters with metallicities as high as
[Fe/H]=, but the abundances measured for more metal rich clusters may be
underestimated. In addition we systematically evaluate the accuracy of
abundance ratios, [X/Fe], for Na I, Mg I, Al I, Si I, Ca I, Ti I, Ti II, Sc II,
V I, Cr I, Mn I, Co I, Ni I, Cu I, Y II, Zr I, Ba II, La II, Nd II, and Eu II.
The elements for which the integrated light analysis gives results that are
most similar to analysis of individual stellar spectra are Fe I, Ca I, Si I, Ni
I, and Ba II. The elements that show the greatest differences include Mg I and
Zr I. Some elements show good agreement only over a limited range in
metallicity. More stellar abundance data in these clusters would enable more
complete evaluation of the integrated light results for other important
elements.Comment: Accepted for publication in ApJ, 37 pages, 13 tables, 29 figure
The chemical evolution of Manganese in different stellar systems
Aims. To model the chemical evolution of manganese relative to iron in three
different stellar systems: the solar neighbourhood, the Galactic bulge and the
Sagittarius dwarf spheroidal galaxy, and compare our results with the recent
and homogeneous observational data. Methods. We adopt three chemical evolution
models well able to reproduce the main properties of the solar vicinity, the
galactic Bulge and the Sagittarius dwarf spheroidal. Then, we compare different
stellar yields in order to identify the best set to match the observational
data in these systems. Results. We compute the evolution of manganese in the
three systems and we find that in order to reproduce simultaneously the [Mn/Fe]
versus [Fe/H] in the Galactic bulge, the solar neighbourhood and Sagittarius,
the type Ia SN Mn yield must be metallicity-dependent. Conclusions. We conclude
that the different histories of star formation in the three systems are not
enough to reproduce the different behaviour of the [Mn/Fe] ratio, unlike the
situation for [alpha/Fe]; rather, it is necessary to invoke
metallicity-dependent type Ia SN Mn yields, as originally suggested by
McWilliam, Rich & Smecker-Hane in 2003.Comment: 9 pages, 3 figures, submitted to A&
The Evolution of Oxygen and Magnesium in the Bulge and Disk of the Milky Way
We show that the Galactic bulge and disk share a similar, strong, decline in
[O/Mg] ratio with [Mg/H]. The similarity of the [O/Mg] trend in these two,
markedly different, populations suggests a metallicity-dependent modulation of
the stellar yields from massive stars, by mass loss from winds, and related to
the Wolf-Rayet phenomenon, as proposed by McWilliam & Rich (2004). We have
modified existing models for the chemical evolution of the Galactic bulge and
the solar neighborhood with the inclusion of metallicity-dependent oxygen
yields from theoretical predictions for massive stars that include mass loss by
stellar winds. Our results significantly improve the agreement between
predicted and observed [O/Mg] ratios in the bulge and disk above solar
metallicity; however, a small zero-point normalization problem remains to be
resolved. The zero-point shift indicates that either the semi-empirical yields
of Francois et al. (2004) need adjustment, or that the bulge IMF is not quite
as flat as found by Ballero et al. (2007); the former explanation is preferred.
Our result removes a previous inconsistency between the interpretation of
[O/Fe] and [Mg/Fe] ratios in the bulge, and confirms the conclusion that the
bulge formed more rapidly than the disk, based on the over-abundances of
elements produced by massive stars. We also provide an explanation for the
long-standing difference between [Mg/Fe] and [O/Fe] trends among disk stars
more metal-rich than the sun.Comment: 22 pages including 5 figures. Submitted to the Astronomical Journa
An Update on the 0Z Project
We give an update on our 0Z Survey to find more extremely metal poor (EMP)
stars with [Fe/H] < -3 dex through mining the database of the Hamburg/ESO
Survey. We present the most extreme such stars we have found from ~1550
moderate resolution follow up spectra. One of these, HE1424-0241, has highly
anomalous abundance ratios not seen in any previously known halo giant, with
very deficient Si, moderately deficient Ca and Ti, highly enhanced Mn and Co,
and low C, all with respect to Fe. We suggest a SNII where the nucleosynthetic
yield for explosive alpha-burning nuclei was very low compared to that for the
hydrostatic alpha-burning element Mg, which is normal in this star relative to
Fe. A second, less extreme, outlier star with high [Sc/Fe] has also been found.
We examine the extremely metal-poor tail of the HES metallicity distribution
function (MDF). We suggest on the basis of comparison of our high resolution
detailed abundance analyses with [Fe/H](HES) for stars in our sample that the
MDF inferred from follow up spectra of the HES sample of candidate EMP stars is
heavily contaminated for [Fe/H](HES) < -3 dex; many of the supposed EMP stars
below that metallicity are of substantially higher Fe-metallicity, including
most of the very C-rich stars, or are spurious objects.Comment: to appear in conference proceedings "First Stars III", ed. B. O'Shea,
A. Heger & T.Abel, 4 pages, 2 figure
- …