43 research outputs found
Visual binding, reentry, and neuronal synchrony in a physically situated brain-based device
By constructing and analyzing a physically
situated brain-based device (i.e. a device
with sensors and actuators whose behavior
is guided by a simulated nervous system),
we show that reentrant connectivity and dynamic
synchronization can provide an effective
mechanism for binding the visual features
of objects
Efficient and Effective Methods for Mixed Precision Neural Network Quantization for Faster, Energy-efficient Inference
For efficient neural network inference, it is desirable to achieve
state-of-the-art accuracy with the simplest networks requiring the least
computation, memory, and power. Quantizing networks to lower precision is a
powerful technique for simplifying networks. As each layer of a network may
have different sensitivity to quantization, mixed precision quantization
methods selectively tune the precision of individual layers to achieve a
minimum drop in task performance (e.g., accuracy). To estimate the impact of
layer precision choice on task performance, two methods are introduced: i)
Entropy Approximation Guided Layer selection (EAGL) is fast and uses the
entropy of the weight distribution, and ii) Accuracy-aware Layer Precision
Selection (ALPS) is straightforward and relies on single epoch fine-tuning
after layer precision reduction. Using EAGL and ALPS for layer precision
selection, full-precision accuracy is recovered with a mix of 4-bit and 2-bit
layers for ResNet-50, ResNet-101 and BERT-base transformer networks,
demonstrating enhanced performance across the entire accuracy-throughput
frontier. The techniques demonstrate better performance than existing
techniques in several commensurate comparisons. Notably, this is accomplished
with significantly lesser computational time required to reach a solution
Charting out the octopus connectome at submicron resolution using the knife-edge scanning microscope
The evaluation of two commercial electric sheep stunning systems:current applied and the effect on heart function
Toward Large-Area Sub-Arcsecond X-Ray Telescopes II
In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates
Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein
Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine
Toward Adaptive X-Ray Telescopes
Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes