535 research outputs found

    Comment On Legacy Nitrogen May Prevent Achievement Of Water Quality Goals In The Gulf Of Mexico

    Get PDF
    Van Meter et al. (Reports, 27 April 2018, p. 427) warn that achieving nitrogen reduction goals in the Gulf of Mexico will take decades as a result of legacy nitrogen effects. We discuss limitations of the modeling approach and demonstrate that legacy effects ranging from a few years to decades are equally consistent with observations. The presented time scales for system recovery are therefore highly uncertain

    Training family physicians and residents in family medicine in shared decision making to improve clinical decisions regarding the use of antibiotics for acute respiratory infections: protocol for a clustered randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore ways to reduce the overuse of antibiotics for acute respiratory infections (ARIs), we conducted a pilot clustered randomized controlled trial (RCT) to evaluate DECISION+, a training program in shared decision making (SDM) for family physicians (FPs). This pilot project demonstrated the feasibility of conducting a large clustered RCT and showed that DECISION+ reduced the proportion of patients who decided to use antibiotics immediately after consulting their physician. Consequently, the objective of this study is to evaluate, in patients consulting for ARIs, if exposure of physicians to a modified version of DECISION+, DECISION+2, would reduce the proportion of patients who decide to use antibiotics immediately after consulting their physician.</p> <p>Methods/design</p> <p>The study is a multi-center, two-arm, parallel clustered RCT. The 12 family practice teaching units (FPTUs) in the network of the Department of Family Medicine and Emergency Medicine of Université Laval will be randomized to a DECISION+2 intervention group (experimental group) or to a no-intervention control group. These FPTUs will recruit patients consulting family physicians and residents in family medicine enrolled in the study. There will be two data collection periods: pre-intervention (baseline) including 175 patients with ARIs in each study arm, and post-intervention including 175 patients with ARIs in each study arm (total n = 700). The primary outcome will be the proportion of patients reporting a decision to use antibiotics immediately after consulting their physician. Secondary outcome measures include: 1) physicians and patients' decisional conflict; 2) the agreement between the parties' decisional conflict scores; and 3) perception of patients and physicians that SDM occurred. Also in patients, at 2 weeks follow-up, adherence to the decision, consultation for the same reason, decisional regret, and quality of life will be assessed. Finally, in both patients and physicians, intention to engage in SDM in future clinical encounters will be assessed. Intention-to-treat analyses will be applied and account for the nested design of the trial will be taken into consideration.</p> <p>Discussion</p> <p>DECISION+2 has the potential to reduce antibiotics use for ARIs by priming physicians and patients to share decisional process and empowering patients to make informed, value-based decisions.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="NCT01116076">NCT01116076</a></p

    Influence of Lag Effect, Soil Release, And Climate Change on Watershed Anthropogenic Nitrogen Inputs and Riverine Export Dynamics

    Full text link
    This study demonstrates the importance of the nitrogen-leaching lag effect, soil nitrogen release, and climate change on anthropogenic N inputs (NANI) and riverine total nitrogen (TN) export dynamics using a 30-yr record for the Yongan River watershed in eastern China. Cross-correlation analysis indicated a 7-yr, 5-yr, and 4-yr lag time in riverine TN export in response to changes in NANI, temperature, and drained agricultural land area, respectively. Enhanced by warmer temperature and improved agricultural drainage, the upper 20 cm of agricultural soils released 270 kg N ha(-1) between 1980 and 2009. Climate change also increased the fractional export of NANI to river. An empirical model (R(2) = 0.96) for annual riverine TN flux incorporating these influencing factors estimated 35%, 41%, and 24% of riverine TN flux originated from the soil N pool, NANI, and background N sources, respectively. The model forecasted an increase of 45%, 25%, and 6% and a decrease of 13% in riverine TN flux from 2010 to 2030 under continued development, climate change, status-quo, and tackling scenarios, respectively. The lag effect, soil N release, and climate change delay riverine TN export reductions with respect to decreases in NANI and should be considered in developing and evaluating N management measures

    Understanding How Inequality in the Distribution of Income Affects Health

    Full text link
    Research on the determinants of health has almost exclusively focused on the individual but it seems clear we cannot understand or improve patterns of population health without engaging structural determinants at the societal level. This article traces the development of research on income distribution and health to the most recent epidemiologic studies from the USA that show how income inequality is related to age-adjusted mortality within the 50 States. (r 520.62, p 5 0.0001) even after accounting for absolute levels of income. We discuss potential material, psychological, social and behavioral pathways through which income distribution might be linked to health status. Distributional aspects of the economy are important determinants of health and may well provide one of the most pertinent indicators of overall social well-being.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66686/2/10.1177_135910539700200303.pd

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16”M h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.

    Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data

    Get PDF
    International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    Search for the isotropic stochastic background using data from Advanced LIGO's second observing run

    Get PDF
    The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study, we present the results from a cross-correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of Ω GW < 6.0 × 10 − 8 for a frequency-independent (flat) background and Ω GW < 4.8 × 10 − 8 at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity