85 research outputs found
One-dimensional transport in bundles of single-walled carbon nanotubes
We report measurements of the temperature and gate voltage dependence for
individual bundles (ropes) of single-walled nanotubes. When the conductance is
less than about e^2/h at room temperature, it is found to decrease as an
approximate power law of temperature down to the region where Coulomb blockade
sets in. The power-law exponents are consistent with those expected for
electron tunneling into a Luttinger liquid. When the conductance is greater
than e^2/h at room temperature, it changes much more slowly at high
temperatures, but eventually develops very large fluctuations as a function of
gate voltage when sufficiently cold. We discuss the interpretation of these
results in terms of transport through a Luttinger liquid.Comment: 5 pages latex including 3 figures, for proceedings of IWEPNM 99
(Kirchberg
Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes
Ultrafast photocurrent measurements are performed on individual carbon
nanotube PN junction photodiodes. The photocurrent response to sub-picosecond
pulses separated by a variable time delay {\Delta}t shows strong photocurrent
suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay
time of photocurrent suppression scales inversely with the applied bias VSD,
and is twice as long for photon energy above the second subband E22 as compared
to lower energy. The observed photocurrent behavior is well described by an
escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure
Chemical doping of individual semiconducting carbon-nanotube ropes
We report the effects of potassium doping on the conductance of individual semiconducting single-walled carbon nanotube ropes. We are able to control the level of doping by reversibly intercalating and de-intercalating potassium. Potassium doping changes the carriers in the ropes from holes to electrons. Typical values for the carrier density are found to be ∼100–1000 electrons/μm. The effective mobility for the electrons is μeff∼20–60 cm2 V-1 s-1, a value similar to that reported for the hole effective mobility in nanotubes [R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)]
Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes
Ultrafast photocurrent measurements are performed on individual carbon
nanotube PN junction photodiodes. The photocurrent response to sub-picosecond
pulses separated by a variable time delay {\Delta}t shows strong photocurrent
suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay
time of photocurrent suppression scales inversely with the applied bias VSD,
and is twice as long for photon energy above the second subband E22 as compared
to lower energy. The observed photocurrent behavior is well described by an
escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure
- …