60 research outputs found

    The cost-effectiveness of procalcitonin for guiding antibiotic prescribing in individuals hospitalized with COVID-19: part of the PEACH study.

    Get PDF
    BackgroundMany hospitals introduced procalcitonin (PCT) testing to help diagnose bacterial coinfection in individuals with COVID-19, and guide antibiotic decision-making during the COVID-19 pandemic in the UK.ObjectivesEvaluating cost-effectiveness of using PCT to guide antibiotic decisions in individuals hospitalized with COVID-19, as part of a wider research programme.MethodsRetrospective individual-level data on patients hospitalized with COVID-19 were collected from 11 NHS acute hospital Trusts and Health Boards from England and Wales, which varied in their use of baseline PCT testing during the first COVID-19 pandemic wave. A matched analysis (part of a wider analysis reported elsewhere) created groups of patients whose PCT was/was not tested at baseline. A model was created with combined decision tree/Markov phases, parameterized with quality-of-life/unit cost estimates from the literature, and used to estimate costs and quality-adjusted life years (QALYs). Cost-effectiveness was judged at a £20 000/QALY threshold. Uncertainty was characterized using bootstrapping.ResultsPeople who had baseline PCT testing had shorter general ward/ICU stays and spent less time on antibiotics, though with overlap between the groups' 95% CIs. Those with baseline PCT testing accrued more QALYs (8.76 versus 8.62) and lower costs (£9830 versus £10 700). The point estimate was baseline PCT testing being dominant over no baseline testing, though with uncertainty: the probability of cost-effectiveness was 0.579 with a 1 year horizon and 0.872 with a lifetime horizon.ConclusionsUsing PCT to guide antibiotic therapy in individuals hospitalized with COVID-19 is more likely to be cost-effective than not, albeit with uncertainty

    Procalcitonin to guide antibiotic use during the first wave of COVID-19 in English and Welsh hospitals: integration and triangulation of findings from quantitative and qualitative sources

    Get PDF
    Aim To integrate the quantitative and qualitative data collected as part of the PEACH (Procalcitonin: Evaluation of Antibiotic use in COVID-19 Hospitalised patients) study, which evaluated whether procalcitonin (PCT) testing should be used to guide antibiotic prescribing and safely reduce antibiotic use among patients admitted to acute UK National Health Service (NHS) hospitals. Design Triangulation to integrate quantitative and qualitative data. Setting and participants Four data sources in 148 NHS hospitals in England and Wales including data from 6089 patients. Method A triangulation protocol was used to integrate three quantitative data sources (survey, organisation-level data and patient-level data: data sources 1, 2 and 3) and one qualitative data source (clinician interviews: data source 4) collected as part of the PEACH study. Analysis of data sources initially took place independently, and then, key findings for each data source were added to a matrix. A series of interactive discussion meetings took place with quantitative, qualitative and clinical researchers, together with patient and public involvement (PPI) representatives, to group the key findings and produce seven statements relating to the study objectives. Each statement and the key findings related to that statement were considered alongside an assessment of whether there was agreement, partial agreement, dissonance or silence across all four data sources (convergence coding). The matrix was then interpreted to produce a narrative for each statement. Objective To explore whether PCT testing safely reduced antibiotic use during the first wave of the COVID-19 pandemic. Results Seven statements were produced relating to the PEACH study objective. There was agreement across all four data sources for our first key statement, ‘During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing’. The second statement was related to this key statement, ‘During the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing safely reduced antibiotic prescribing’. Partial agreement was found between data sources 3 (quantitative patient-level data) and 4 (qualitative clinician interviews). There were no data regarding safety from data sources 1 or 2 (quantitative survey and organisational-level data) to contribute to this statement. For statements three and four, ‘PCT was not used as a central factor influencing antibiotic prescribing’, and ‘PCT testing reduced antibiotic prescribing in the emergency department (ED)/acute medical unit (AMU),’ there was agreement between data source 2 (organisational-level data) and data source 4 (interviews with clinicians). The remaining two data sources (survey and patient-level data) contributed no data on this statement. For statement five, ‘PCT testing reduced antibiotic prescribing in the intensive care unit (ICU)’, there was disagreement between data sources 2 and 3 (organisational-level data and patient-level data) and data source 4 (clinician interviews). Data source 1 (survey) did not provide data on this statement. We therefore assigned dissonance to this statement. For statement six, ‘There were many barriers to implementing PCT testing during the first wave of COVID-19’, there was partial agreement between data source 1 (survey) and data source 4 (clinician interviews) and no data provided by the two remaining data sources (organisational-level data and patient-level data). For statement seven, ‘Local PCT guidelines/protocols were perceived to be valuable’, only data source 4 (clinician interviews) provided data. The clinicians expressed that guidelines were valuable, but as there was no data from the other three data sources, we assigned silence to this statement. Conclusion There was agreement between all four data sources on our key finding ‘during the first wave of the pandemic (01/02/2020-30/06/2020), PCT testing reduced antibiotic prescribing’. Data, methodological and investigator triangulation, and a transparent triangulation protocol give validity to this finding

    Procalcitonin evaluation of antibiotic use in COVID-19 hospitalised patients (PEACH): protocol for a retrospective observational study

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is a viral illness, many patients admitted to hospital are prescribed antibiotics, based on concerns that COVID-19 patients may experience secondary bacterial infections, and the assumption that they may respond well to antibiotic therapy. This has led to an increase in antibiotic use for some hospitalised patients at a time when accumulating antibiotic resistance is a major global threat to health. Procalcitonin (PCT) is an inflammatory marker measured in blood samples and widely recommended to help diagnose bacterial infections and guide antibiotic treatment. The PEACH study will compare patient outcomes from English and Welsh hospitals that used PCT testing during the first wave of the COVID-19 pandemic with those from hospitals not using PCT. It will help to determine whether, and how, PCT testing should be used in the NHS in future waves of COVID-19 to protect patients from antibiotic overuse. PEACH is a retrospective observational cohort study using patient-level clinical data from acute hospital Trusts and Health Boards in England and Wales. The primary objective is to measure the difference in antibiotic use between COVID-19 patients who did or did not have PCT testing at the time of diagnosis. Secondary objectives include measuring differences in length of stay, mortality, intensive care unit admission, and resistant bacterial infections between these groups

    A retrospective propensity-score-matched cohort study of the impact of procalcitonin testing on antibiotic use in hospitalized patients during the first wave of COVID-19.

    Get PDF
    BackgroundProcalcitonin (PCT) is a blood marker used to help diagnose bacterial infections and guide antibiotic treatment. PCT testing was widely used/adopted during the COVID-19 pandemic in the UK.ObjectivesPrimary: to measure the difference in length of early (during first 7 days) antibiotic prescribing between patients with COVID-19 who did/did not have baseline PCT testing during the first wave of the pandemic. Secondary: to measure differences in length of hospital/ICU stay, mortality, total days of antibiotic prescribing and resistant bacterial infections between these groups.MethodsMulti-centre, retrospective, observational, cohort study using patient-level clinical data from acute hospital Trusts/Health Boards in England/Wales. Inclusion: patients ≥16 years, admitted to participating Trusts/Health Boards and with a confirmed positive COVID-19 test between 1 February 2020 and 30 June 2020.ResultsData from 5960 patients were analysed: 1548 (26.0%) had a baseline PCT test and 4412 (74.0%) did not. Using propensity-score matching, baseline PCT testing was associated with an average reduction in early antibiotic prescribing of 0.43 days [95% confidence interval (CI): 0.22-0.64 days, P ConclusionsBaseline PCT testing appears to have been an effective antimicrobial stewardship tool early in the pandemic: it reduced antibiotic prescribing without evidence of harm. Our study highlights the need for embedded, rapid evaluations of infection diagnostics in the National Health Service so that even in challenging circumstances, introduction into clinical practice is supported by evidence for clinical utility.Study registration numberISRCTN66682918

    Efficacy and safety of onasemnogene abeparvovec in children with spinal muscular atrophy type 1: real-world evidence from 6 infusion centres in the United Kingdom.

    Get PDF
    peer reviewed[en] BACKGROUND: Real-world data on the efficacy and safety of onasemnogene abeparvovec (OA) in spinal muscular atrophy (SMA) are needed, especially to overcome uncertainties around its use in older and heavier children. This study evaluated the efficacy and safety of OA in patients with SMA type 1 in the UK, including patients ≥2 years old and weighing ≥13.5 kg. METHODS: This observational cohort study used data from patients with genetically confirmed SMA type 1 treated with OA between May 2021 and January 2023, at 6 infusion centres in the United Kingdom. Functional outcomes were assessed using age-appropriate functional scales. Safety analyses included review of liver function, platelet count, cardiac assessments, and steroid requirements. FINDINGS: Ninety-nine patients (45 SMA therapy-naïve) were treated with OA (median age at infusion: 10 [range, 0.6-89] months; median weight: 7.86 [range, 3.2-20.2] kg; duration of follow-up: 3-22 months). After OA infusion, mean ± SD change in CHOP-INTEND score was 11.0 ± 10.3 with increased score in 66/78 patients (84.6%); patients aged 100 U/L (95% CI, 2.3-223.7; P = 0.008) and 21.2-fold increased odds of steroid doubling, as per treatment protocol (95% CI, 2.2-209.2; P = 0.009) in patients weighing ≥13.5 kg versus <8.5 kg. Weight at infusion was positively correlated with steroid treatment duration (r = 0.43; P < 0.001). Worsening transaminitis, despite doubling of oral prednisolone, led to treatment with intravenous methylprednisolone in 5 children. Steroid-sparing immunosuppressants were used in 5 children to enable steroid weaning. Two deaths apparently unrelated to OA were reported. INTERPRETATION: OA led to functional improvements and was well tolerated with no persistent clinical complications, including in older and heavier patients. FUNDING: Novartis Innovative Therapies AG provided a grant for independent medical writing services

    Bi-allelic loss-of-function CACNA1B mutations in progressive epilepsy-dyskinesia

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment
    corecore