233 research outputs found

    The White Dwarfs within 25 Parsecs of the Sun: Kinematics and Spectroscopic Subtypes

    Get PDF
    We present the fractional distribution of spectroscopic subtypes, range and distribution of surface temperatures, and kinematical properties of the white dwarfs within 25pc of the sun. There is no convincing evidence of halo white dwarfs in the total 25 pc sample of 224 white dwarfs. There is also little to suggest the presence of genuine thick disk subcomponent members within 25 parsecs. It appears that the entire 25 pc sample likely belong to the thin disk. We also find no significant kinematic differences with respect to spectroscopic subtypes. The total DA to non-DA ratio of the 25 pc sample is 1.8, a manifestation of deepening envelope convection which transforms DA stars with sufficiently thin H surface layers into non-DAs. We compare this ratio with the results of other studies. We find that at least 11% of the white dwarfs within 25 parsecs of the sun (the DAZ and DZ stars) have photospheric metals that likely originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, then it suggests the possibility that a similar percentage have planets, asteroid-like bodies or debris disks orbiting them. Our volume-limited sample reveals a pileup of DC white dwarfs at the well-known cutoff in DQ white dwarfs at Tef about 6000K. Mindful of small number statistics, we speculate on its possible evolutionary significance. We find that the incidence of magnetic white dwarfs in the 25 pc sample is at least 8%, in our volume-limited sample, dominated by cool white dwarfs. We derive approximate formation rates of DB and DQ degenerates and present a preliminary test of the evolutionary scenario that all cooling DB stars become DQ white dwarfs via helium convective dredge-up with the diffusion tail of carbon extending upward from their cores.Comment: Accepted for publication in The Astronomical Journa

    Intermediate and narrow band photometry of Epsilon Aurigae

    Get PDF
    Intermediate band blue (4530A), far red (7790A) and H-alpha intermediate and narrow band photoelectric observations of the peculiar, 27 year eclipsing binary, Epsilon Aurigae were made from December 1981 through the present (December 1984). BD +42 1170 served as the primary comparison star because of its angular proximity to the variable star. The analysis of this data along with other available photometry was undertaken to study the characteristics of the low amplitude, semi-regular light variations that appear inside and outside of eclipse. It appears that these short term light variations arise from nonradial pulsations of the luminous f supergiant in the system. Furthermore, the semi-regular light variations found for Epsilon Aurigae are similar to those found for other luminous A-F supergiants. Also, the preliminary results from the analyses of the light variations produced by the eclipse of the F-supergiant by the mysterious cooler component is discussed

    Revised physical elements of the astrophysically important O9.5+O9.5V eclipsing binary system Y Cyg

    Full text link
    Thanks to its long and rich observational history and rapid apsidal motion, the massive eclipsing binary Y Cyg represents one of the cornestones to critical tests of stellar evolution theory for massive stars. Yet, the determination of the basic physical properties is less accurate than it could be given the existing number of spectral and photometric observations. Our goal is to analyze all these data simultaneously with the new dedicated series of our own spectral and photometric observations from observatories widely separated in longitude. We obtained new series of UBV observations at three observatories separated in local time to obtain complete light curves of Y Cyg for its orbital period close to 3 days. This new photometry was reduced and carefully transformed to the standard UBV system using the HEC22 program. We also obtained new series of red spectra secured at two observatories and re-analyzed earlier obtained blue electronic spectra. Our analyses provide the most accurate so far published value of the apsidal period of 47.805 +/- 0.030 yrs and the following physical elements: M1=17.72+/-0.35$ Msun, M2=17.73+/-0.30 Msun, R1=5.785+/-0.091 Rsun, and R2=5.816+/-0.063 Rsun. The disentangling thus resulted in the masses, which are somewhat higher than all previous determinations and virtually the same for both stars, while the light curve implies a slighly higher radius and luminosity for star 2. The above empirical values imply the logarithm of the internal structure constant log k2 = -1.937. A comparison with Claret's stellar interior models implies an age close to 2 millions yrs for both stars. The claimed accuracy of modern element determination of 1-2 per cent seems still a bit too optimistic and obtaining new high-dispersion and high-resolution spectra is desirable.Comment: 13 pages; accepted for publication in Astronomy and Astrophysic

    A New Look at the Local White Dwarf Population

    Get PDF
    We have conducted a detailed new survey of the local population of white dwarfs lying within 20 pc of the Sun. A new revised catalog of local white dwarfs containing 122 entries (126 individual degenerate stars) is presented. This list contains 27 white dwarfs not included in a previous list from 2002, as well as new and recently published trigonometric parallaxes. In several cases new members of the local white dwarf population have come to light through accurate photometric distance estimates. In addition, a suspected new double degenerate system (WD 0423+120) has been identified. The 20 pc sample is currently estimated to be 80% complete. Using a variety of recent spectroscopic, photometric, and trigonometric distance determinations, we re-compute a space density of 4.8 ± 0.5 × 10−3 pc−3 corresponding to a mass density of 3.2 ± 0.3 × 10−3 M pc−3 from the complete portion of the sample within 13 pc. We find an overall mean mass for the local white dwarfs of 0.665 M, a value larger than most other non-volume-limited estimates. Although the sample is small, we find no evidence of a correlation between mass and temperature in which white dwarfs below 13,000 K are systematically more massive than those above this temperature. Within 20 pc 25% of the white dwarfs are in binary systems (including double degenerate systems). Approximately 6% are double degenerates and 6.5% are Sirius-like systems. The fraction of magnetic white dwarfs in the local population is found to be 13%

    Spectroscopic analysis of DA white dwarfs from the McCook & Sion catalog

    Full text link
    For some years now, we have been gathering optical spectra of DA white dwarfs in an effort to study and define the empirical ZZ Ceti instability strip. However, we have recently expanded this survey to include all the DA white dwarfs in the McCook & Sion catalog down to a limiting visual magnitude of V=17.5. We present here a spectroscopic analysis of over 1000 DA white dwarfs from this ongoing survey. We have several specific areas of interest most notably the hot DAO white dwarfs, the ZZ Ceti instability strip, and the DA+dM binary systems. Furthermore, we present a comparison of the ensemble properties of our sample with those of other large surveys of DA white dwarfs, paying particular attention to the distribution of mass as a function of effective temperature.Comment: 8 pages, 7 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    On the nature of the FBS blue stellar objects and the completeness of the Bright Quasar Survey. II

    Get PDF
    In Paper I (Mickaelian et al. 1999), we compared the surface density of QSOs in the Bright Quasar Survey (BQS) and in the First Byurakan Survey (FBS) and concluded that the completeness of the BQS is of the order of 70% rather than 30-50% as suggested by several authors. A number of new observations recently became available, allowing a re-evaluation of this completeness. We now obtain a surface density of QSOs brighter than B = 16.16 in a subarea of the FBS covering ~2250 deg^2, equal to 0.012 deg^-2 (26 QSOs), implying a completeness of 53+/-10%.Comment: LaTeX 2e, 11 pages, 3 tables and 3 figures (included in text). To appear in Astrophysics. Uses a modified aaspp4.sty (my_aaspp4.sty), included in packag

    The galactic population of white dwarfs

    Get PDF
    Original paper can be found at: http://www.iop.org/EJ/conf DOI: 10.1088/1742-6596/172/1/012004 [16th European White Dwarfs Workshop]The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial– mass– function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the – often neglected – population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.Peer reviewe
    corecore