22 research outputs found

    Thermoreceptors: Recent heat in thermosensation

    Get PDF
    AbstractEvery organism with a nervous system can detect changes in temperature. Recent studies on sensory neurons from rats and genetic evidence from nematodes have provided intriguing hints about the molecular basis of thermosensation

    Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat

    Get PDF
    BACKGROUND: Despite the clinical significance of muscle pain, and the extensive investigation of the properties of muscle afferent fibers, there has been little study of the ion channels on sensory neurons that innervate muscle. In this study, we have fluorescently tagged sensory neurons that innervate the masseter muscle, which is unique because cell bodies for its muscle spindles are in a brainstem nucleus (mesencephalic nucleus of the 5(th )cranial nerve, MeV) while all its other sensory afferents are in the trigeminal ganglion (TG). We examine the hypothesis that certain molecules proposed to be used selectively by nociceptors fail to express on muscle spindles afferents but appear on other afferents from the same muscle. RESULTS: MeV muscle afferents perfectly fit expectations of cells with a non-nociceptive sensory modality: Opiates failed to inhibit calcium channel currents (I(Ca)) in 90% of MeV neurons, although I(Ca )were inhibited by GABA(B )receptor activation. All MeV afferents had brief (1 msec) action potentials driven solely by tetrodotoxin (TTX)-sensitive Na channels and no MeV afferent expressed either of three ion channels (TRPV1, P2X3, and ASIC3) thought to be transducers for nociceptive stimuli, although they did express other ATP and acid-sensing channels. Trigeminal masseter afferents were much more diverse. Virtually all of them expressed at least one, and often several, of the three putative nociceptive transducer channels, but the mix varied from cell to cell. Calcium currents in 80% of the neurons were measurably inhibited by μ-opioids, but the extent of inhibition varied greatly. Almost all TG masseter afferents expressed some TTX-insensitive sodium currents, but the amount compared to TTX sensitive sodium current varied, as did the duration of action potentials. CONCLUSION: Most masseter muscle afferents that are not muscle spindle afferents express molecules that are considered characteristic of nociceptors, but these putative muscle nociceptors are molecularly diverse. This heterogeneity may reflect the mixture of metabosensitive afferents which can also signal noxious stimuli and purely nociceptive afferents characteristic of muscle

    A Conformation Change in the Extracellular Domain that Accompanies Desensitization of Acid-sensing Ion Channel (ASIC) 3

    Get PDF
    Acid-sensing ion channels (ASICs) are thought to trigger some forms of acid-induced pain and taste, and to contribute to stroke-induced neural damage. After activation by low extracellular pH, different ASICs undergo desensitization on time scales from 0.1 to 10 s. Consistent with a substantial conformation change, desensitization slows dramatically when temperature drops (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. PNAS. 98:6459–6463). The nature of this conformation change is unknown, but two studies showed that desensitization rate is altered by mutations on or near the first transmembrane domain (TM1) (Coric, T., P. Zhang, N. Todorovic, and C.M. Canessa. 2003. J. Biol. Chem. 278:45240–45247; Pfister, Y., I. Gautschi, A.-N. Takeda, M. van Bemmelen, S. Kellenberger, and L. Schild. 2006. J. Biol. Chem. 281:11787–11791). Here we show evidence of a specific conformation change associated with desensitization. When mutated from glutamate to cysteine, residue 79, which is some 20 amino acids extracellular to TM1, can be altered by cysteine-modifying reagents when the channel is closed, but not when it is desensitized; thus, desensitization appears to conceal the residue from the extracellular medium. D78 and E79 are a pair of adjacent acidic amino acids that are highly conserved in ASICs yet absent from epithelial Na+ channels, their acid-insensitive relatives. Despite large effects on desensitization by mutations at positions 78 and 79—including a shift to 10-fold lower proton concentration with the E79A mutant—there are not significant effects on activation

    ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Get PDF
    BACKGROUND: ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1) ASIC3 might trigger ischemic pain in heart and muscle; 2) it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. RESULTS: Less than half (40%) of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small (<25 μm) sensory neurons that innervate muscle are more likely to express ASIC3 than those that innervate skin (51% of small muscle afferents vs. 28% of small skin afferents). Over 80% of ASIC3+ muscle afferents co-express CGRP (a vasodilatory peptide). Remarkably few (9%) ASIC3+ cells express P2X3 receptors (an ATP-gated ion channel), whereas 31% express TRPV1 (the noxious heat and capsaicin-activated ion channel also known as VR1). ASIC3+/CGRP+ sensory nerve endings were observed on muscle arterioles, the blood vessels that control vascular resistance; like the cell bodies, the endings are P2X3- and can be TRPV1+. The TrkC+/ASIC3+ cell bodies are uniformly large, possibly consistent with non-nociceptive mechanosensation. They are not proprioceptors because they fail two other tests: ASIC3+ cells do not express parvalbumin and they are absent from the mesencephalic trigeminal nucleus. CONCLUSION: Our data indicates that: 1) ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2) co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen
    corecore