108 research outputs found

    Semiconductor Thermistors

    Full text link
    Semiconductor thermistors operating in the variable range hopping conduction regime have been used in thermal detectors of all kinds for more than fifty years. Their use in sensitive bolometers for infrared astronomy was a highly developed empirical art even before the basic physics of the conduction mechanism was understood. Today we are gradually obtaining a better understanding of these devices, and with improvements in fabrication technologies thermometers can now be designed and built with predictable characteristics. There are still surprises, however, and it is clear that the theory of their operation is not yet complete. In this chapter we give an overview of the basic operation of doped semiconductor thermometers, outline performance considerations, give references for empirical design and performance data, and discuss fabrication issues.Comment: 25 pages, 21 figure

    Constraints on the Interactions between Dark Matter and Baryons from the X-ray Quantum Calorimetry Experiment

    Get PDF
    Although the rocket-based X-ray Quantum Calorimetry (XQC) experiment was designed for X-ray spectroscopy, the minimal shielding of its calorimeters, its low atmospheric overburden, and its low-threshold detectors make it among the most sensitive instruments for detecting or constraining strong interactions between dark matter particles and baryons. We use Monte Carlo simulations to obtain the precise limits the XQC experiment places on spin-independent interactions between dark matter and baryons, improving upon earlier analytical estimates. We find that the XQC experiment rules out a wide range of nucleon-scattering cross sections centered around one barn for dark matter particles with masses between 0.01 and 10^5 GeV. Our analysis also provides new constraints on cases where only a fraction of the dark matter strongly interacts with baryons.Comment: 15 pages, 9 figures. Extended discussion of methodology, to appear in PR

    Design of Optical/IR Blocking Filters for the Lynx X-Ray Microcalorimeter

    Get PDF
    The Lynx mission concept, under development ahead of the 2020 Astrophysics Decadal Review, includes the Lynx X-ray Microcalorimeter (LXM) as one of its primary instruments. The LXM uses a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution nondispersive spectroscopy in the soft x-ray waveband (0.2 to 15 keV) with exquisite angular resolution. Similar to other x-ray microcalorimeters, the LXM uses a set of blocking filters mounted within the dewar that pass the photons of interest (x-rays) while attenuating the out-of-band long-wavelength radiation. Such filters have been successfully used on previous orbital and suborbital instruments; however, the Lynx science objectives, which emphasize observations in the soft x-ray band (<1keV), pose more challenging requirements on the set of LXM blocking filters. We present an introduction to the design of the LXM optical/IR blocking filters and discuss recent advances in filter capability targeted at LXM. In addition, we briefly describe the external filters and the modulated x-ray sources to be used for onboard detector calibration

    An X-ray Spectroscopic Study of the Hot Interstellar Medium Toward the Galactic Bulge

    Full text link
    We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Kalpha and NeIX Kalpha by Chandra LTGS as shown by previous works, Suzaku detected clearly the emission lines of OVII, OVIII, NeIX and NeX from the vicinity. We used simplified plasma models with constant temperature and density. Evaluation of the background and foreground emission was performed carefully, including stellar X-ray contribution based on the recent X-ray observational results and stellar distribution simulator. If we assume that one plasma component exists in front of 4U1820-303 and the other one at the back, the obtained temperatures are T= 1.7 +/- 0.2 MK for the front-side plasma and T=3.9(+0.4-0.3) MK for the backside. This scheme is consistent with a hot and thick ISM disk as suggested by the extragalactic source observations and an X-ray bulge around the Galactic center.Comment: 14 pages, 15 figures, accepted to be published in PASJ (Replace figure files to fix latex problem

    Vibration Isolation Design for the Micro-X Rocket Payload

    Get PDF
    Micro-X is a NASA-funded, sounding rocket-borne X-ray imaging spectrometer that will allow high precision measurements of velocity structure, ionization state and elemental composition of extended astrophysical systems. One of the biggest challenges in payload design is to maintain the temperature of the detectors during launch. There are several vibration damping stages to prevent energy transmission from the rocket skin to the detector stage, which causes heating during launch. Each stage should be more rigid than the outer stages to achieve vibrational isolation. We describe a major design effort to tune the resonance frequencies of these vibration isolation stages to reduce heating problems prior to the projected launch in the summer of 2014.Comment: 6 pages, 7 figures, LTD15 Conference Proceeding

    Salt Pill Design and Fabrication for Adiabatic Demagnetization Refrigerators

    Get PDF
    The performance of an adiabatic demagnetization refrigerator (ADR) is critically dependent on the design and construction of the salt pills that produce cooling. In most cases, the primary goal is to obtain the largest cooling capacity at the low temperature end of the operating range. The realizable cooling capacity depends on a number of factors, including refrigerant mass, and how efficiently it absorbs heat from the various instrument loads. The design and optimization of "salt pills" for ADR systems depend not only on the mechanical, chemical and thermal properties of the refrigerant, but also on the range of heat fluxes that the salt pill must accommodate. Despite the fairly wide variety of refrigerants available, those used at very low temperature tend to be hydrated salts that require a dedicated thermal bus and must be hermetically sealed, while those used at higher temperature - greater than about 0.5 K - tend to be single- or poly-crystals that have much simpler requirements for thermal and mechanical packaging. This paper presents a summary of strategies and techniques for designing, optimizing and fabricating salt pills for both low- and mid-temperature applications

    Cosmic x ray physics

    Get PDF
    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies

    Limits to the 1/4 keV Extragalactic X-ray Background

    Get PDF
    We observed several nearby face-on spiral galaxies with the ROSAT PSPC. The apparent deficiency in soft X-ray surface brightness observed at the outer portion of their disks is consistent with the absorption of the extragalactic soft X-ray background by material associated with these galaxies, and allows us to place a lower limit on the intensity of this cosmologically important background. From the depth of the soft X-ray shadow observed in NGC 3184, a 95% confidence lower limit was derived to be 32keVcm−2s−1keV−132 keV cm^{-2} s^{-1} keV^{-1} at 1/4 keV. This was obtained by assuming that there is no unresolved 1/4 keV X-ray emission from the outer region of the galaxy which may otherwise partially fill in the shadow: any such emission, or any unresolved structure in the absorbing gas, would imply a larger value. In the deepest exposure to date in this energy range, Hasinger et al. (1993) resolved about 30keVcm−2s−1keV−130 keV cm^{-2} s^{-1} keV^{-1} at 1/4 keV into discrete sources; our current limit is therefore consistent with an extragalactic origin for all of these sources. Our results can also be directly compared with the corresponding upper limit derived from the ROSAT PSPC detection of soft X-ray shadows cast by high-latitude clouds in Ursa Major, ≃65keVcm−2s−1keV−1\simeq 65 keV cm^{-2} s^{-1} keV^{-1} at 1/4 keV. The lower and upper limits are only a factor of 2 apart, and begin to provide a reasonable measurement of the intensity of the 1/4 keV extragalactic X-ray background.Comment: 7 pages, no figures, a companion paper to the one titled "Diffuse Soft X-ray Emission from Several Nearby Spiral Galaxies" (astro-ph/9604128). To appear in September issue of ApJ (Vol. 468
    • …
    corecore