86 research outputs found
Using evidence combination for transformer defect diagnosis
This paper describes a number of methods of evidence combination, and their applicability to the domain of transformer defect diagnosis. It explains how evidence combination fits into an on-line and implemented agent-based condition monitoring system, and the benefits of giving selected agents reflective abilities. Reflection has not previously been deployed in an industrial setting, and theoretical work has been in domains other than power engineering. This paper presents the results of implementing five different methods of evidence combination, showing that reflective techniques give greater accuracy than non-reflective
Automated post-fault diagnosis of power system disturbances
In order to automate the analysis of SCADA and digital fault recorder (DFR) data for a transmission network operator in the UK, the authors have developed an industrial strength multi-agent system entitled protection engineering diagnostic agents (PEDA). The PEDA system integrates a number of legacy intelligent systems for analyzing power system data as autonomous intelligent agents. The integration achieved through multi-agent systems technology enhances the diagnostic support offered to engineers by focusing the analysis on the most pertinent DFR data based on the results of the analysis of SCADA. Since November 2004 the PEDA system has been operating online at a UK utility. In this paper the authors focus on the underlying intelligent system techniques, i.e. rule-based expert systems, model-based reasoning and state-of-the-art multi-agent system technology, that PEDA employs and the lessons learnt through its deployment and online use
Integrating an agent-based wireless sensor network within an existing multi-agent condition monitoring system
The use of wireless sensor networks for condition monitoring is gaining ground across all sectors of industry, and while their use for power engineering applications has yet been limited, they represent a viable platform for next-generation substation condition monitoring systems. For engineers to fully benefit from this new approach to condition monitoring, new sensor data must be incorporated into a single integrated system. This paper proposes the integration of an agent-based wireless sensor network with an existing agent-based condition monitoring system. It demonstrates that multi-agent systems can be extended down to the sensor level while considering the reduced energy availability of low-power embedded devices. A novel agent-based approach to data translation is presented, which is demonstrated through two case studies: a lab-based temperature and vibration monitoring system, and a proposal to integrate a wireless sensor network to an existing technology demonstrator deployed in a substation in the UK
A frequency-based RF partial discharge detector for low-power wireless sensing
Partial discharge (PD) monitoring has been the subject of significant research in recent years, which has given rise to a range of well-established PD detection and measurement techniques, such as acoustic and RF, on which condition monitoring systems for highvoltage equipment have been based. This paper presents a novel approach to partial discharge monitoring by using a low-cost, low-power RF detector. The detector employs a frequency-based technique that can distinguish between multiple partial discharge events and other impulsive noise sources within a substation, tracking defect severity over time and providing information pertaining to plant health. The detector is designed to operate as part of a wireless condition monitoring network, removing the need for additional wiring to be installed into substations whilst still gaining the benefits of the RF technique. This novel approach to PD detection not only provides a low-cost solution to on-line partial discharge monitoring, but also presents a means to deploy wide-scale RF monitoring without the associated costs of wide-band monitoring systems
Issues in integrating existing multi-agent systems for power engineering applications
Multi-agent systems (MAS) have proven to be an effective platform for diagnostic and condition monitoring applications in the power industry. For example, a multi-agent system architecture, entitled condition monitoring multi-agent system (COMMAS) (McArthur et al., 2004), has been applied to the ultra high frequency (UHF) monitoring of partial discharge activity inside transformers. Additionally, a multi-agent system, entitled protection engineering diagnostic agents (PEDA) (Hossack et al., 2003), has demonstrated the use of MAS technology for automated and enhanced post-fault analysis of power systems disturbances based on SCADA and digital fault recorder (DFR) data. In this paper, the authors propose the integration of COMMAS and PEDA as a means of offering enhanced decision support to engineers tasked with managing transformer assets. By providing automatically interpreted data related to condition monitoring and power system disturbances, the proposed integrated system offer engineers a more comprehensive picture of the health of a given transformer. Defects and deterioration in performance can be correlated with the operating conditions it experiences. The integration of COMMAS and PEDA has highlighted the issues inherent to the inter-operation of existing multi-agent systems and, in particular, the issues surrounding the use of differing ontologies. The authors believe that these issues need to be addressed if there is to be widespread deployment of MAS technology within the power industry. This paper presents research undertaken to integrate the two MAS and to deal with ontology issues
Development of an integrated low-power RF partial discharge detector
This paper presents the results from integrating a low-power partial discharge detector with a wireless sensor node designed for operating as part of an IEEE 802.15.4 sensor network, and applying an on-line classifier capable of classifying partial discharges in real-time. Such a system is of benefit to monitoring engineers as it provides a means to exploit the RF technique using a low-cost device while circumventing the need for any additional cabling associated with new condition monitoring systems. The detector uses a frequency-based technique to differentiate between multiple defects, and has been integrated with a SunSPOT wireless sensor node hosting an agent-based monitoring platform, which includes a data capture agent and rule induction agent trained using experimental data. The results of laboratory system verification are discussed, and the requirements for a fully robust and flexible system are outlined
On-line transformer condition monitoring through diagnostics and anomaly detection
This paper describes the end-to-end components of an on-line system for diagnostics and anomaly detection. The system provides condition monitoring capabilities for two in- service transmission transformers in the UK. These transformers are nearing the end of their design life, and it is hoped that intensive monitoring will enable them to stay in service for longer. The paper discusses the requirements on a system for interpreting data from the sensors installed on site, as well as describing the operation of specific diagnostic and anomaly detection techniques employed. The system is deployed on a substation computer, collecting and interpreting site data on-line
Data mining reactor fuel grab load trace data to support nuclear core condition monitoring
A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described
The role of circumstance monitoring on the diagnostic interpretation of condition monitoring data
Circumstance monitoring, a recently coined termed defines the collection of data reflecting the real network working environment of in-service equipment. This ideally complete data set should reflect the elements of the electrical, mechanical, thermal, chemical and environmental stress factors present on the network. This must be distinguished from condition monitoring, which is the collection of data reflecting the status of in-service equipment. This contribution investigates the significance of considering circumstance monitoring on diagnostic interpretation of condition monitoring data. Electrical treeing partial discharge activity from various harmonic polluted waveforms have been recorded and subjected to a series of machine learning techniques. The outcome provides a platform for improved interpretation of the harmonic influenced partial discharge patterns. The main conclusion of this exercise suggests that any diagnostic interpretation is dependent on the immunity of condition monitoring measurements to the stress factors influencing the operational conditions. This enables the asset manager to have an improved holistic view of an asset's health
Providing decision support for the condition-based maintenance of circuit breakers through data mining of trip coil current signatures
The focus of this paper centers on the condition assessment of 11kV-33kV distribution circuit breakers from the analysis of their trip coil current signatures captured using an innovative condition monitoring technology developed by others. Using available expert knowledge in conjunction with a structured process of data mining, thresholds associated with features representing each stage of a circuit breaker's operation may be defined and used to characterize varying states of circuit breaker condition. Knowledge and understanding of satisfactory and unsatisfactory breaker condition can be gained and made explicit from the analysis of captured trip signature data and subsequently used to form the basis of condition assessment and diagnostic rules implemented in a decision support system, used to inform condition-based decisions affecting circuit breaker maintenance. This paper proposes a data mining method for the analysis of condition monitoring data, and demonstrates this method in its discovery of useful knowledge from trip coil data captured from a population of SP Power System's in-service circuit breakers. This knowledge then forms the basis of a decision support system for the condition assessment of these circuit breakers during routine trip testing
- …