4 research outputs found

    Polyethylenes with Combined In-Chain and Side-Chain Functional Groups from Catalytic Terpolymerization of Carbon Monoxide and Acrylate

    No full text
    Linear polyethylenes with a combination of incorporated in-chain keto as well as side-chain ester groups are formed by Ni(II)-catalyzed terpolymerization of ethylene, carbon monoxide, and methyl acrylate. These possess a random structure, with largely isolated nonalternating in-chain keto groups as well as ester-substituted units adjacent to the polyethylene chain, whereas the solid-state structure of polyethylene is retained. Molecular weights of the terpolymers (Mn ∼ 20.000 g mol–1) are predominantly determined by chain transfer after acrylate incorporation

    Keto-Polyethylenes with Controlled Crystallinity and Materials Properties from Catalytic Ethylene–CO–Norbornene Terpolymerization

    No full text
    Recent advances in Ni(II) catalyzed, nonalternating catalytic copolymerization of ethylene with carbon monoxide (CO) enable the synthesis of in-chain keto-functionalized polyethylenes (keto-PEs) with high-density polyethylene-like materials properties. Addition of norbornene as a bulky, noncrystallizable comonomer during catalytic polymerization allows tuning of the crystallinity in these keto-PE materials by randomly incorporated norbornene units in the polymer chain, while molecular weights are not adversely affected. Such crystallinity-reduced keto-PEs are characterized as softer materials with better ductility and may therefore be more suited for, e.g., potential film applications

    Mechanistic Insights into Ni(II)-Catalyzed Nonalternating Ethylene–Carbon Monoxide Copolymerization

    No full text
    Polyethylene materials with in-chain-incorporated keto groups were recently enabled by nonalternating copolymerization of ethylene with carbon monoxide in the presence of Ni­(II) phosphinephenolate catalysts. We elucidate the mechanism of this long-sought-for reaction by a combined theoretical DFT study of catalytically active species and the experimental study of polymer microstructures formed in pressure-reactor copolymerizations with different catalysts. The pathway leading to the desired nonalternating incorporation proceeds via the cis/trans isomerization of an alkyl-olefin intermediate as the rate-determining step. The formation of alternating motifs is determined by the barrier for the opening of the six-membered C,O-chelate by ethylene binding as the decisive step. An η2-coordination of a P-bound aromatic moiety axially oriented to the metal center is a crucial feature of these Ni­(II) catalysts, which also modulates the competition between the two pathways. The conformational constraints imposed in a 2′,6′-dimethoxybiphenyl moiety overall result in a desirable combination of disfavoring ethylene coordination along the alternating incorporation pathway, which is primarily governed by electronics, while not overly penalizing the nonalternating chain growth, which is primarily governed by sterics

    Mechanistic Insights into Ni(II)-Catalyzed Nonalternating Ethylene–Carbon Monoxide Copolymerization

    No full text
    Polyethylene materials with in-chain-incorporated keto groups were recently enabled by nonalternating copolymerization of ethylene with carbon monoxide in the presence of Ni­(II) phosphinephenolate catalysts. We elucidate the mechanism of this long-sought-for reaction by a combined theoretical DFT study of catalytically active species and the experimental study of polymer microstructures formed in pressure-reactor copolymerizations with different catalysts. The pathway leading to the desired nonalternating incorporation proceeds via the cis/trans isomerization of an alkyl-olefin intermediate as the rate-determining step. The formation of alternating motifs is determined by the barrier for the opening of the six-membered C,O-chelate by ethylene binding as the decisive step. An η2-coordination of a P-bound aromatic moiety axially oriented to the metal center is a crucial feature of these Ni­(II) catalysts, which also modulates the competition between the two pathways. The conformational constraints imposed in a 2′,6′-dimethoxybiphenyl moiety overall result in a desirable combination of disfavoring ethylene coordination along the alternating incorporation pathway, which is primarily governed by electronics, while not overly penalizing the nonalternating chain growth, which is primarily governed by sterics
    corecore