79 research outputs found

    Problems in fluid dynamics

    Get PDF
    A scheme was developed for the parametric differentiation and integration of gas dynamics equations. A numerical integration of the gas dynamics equations is necessarily performed for a specific set of parameter values. The linear variational equations are obtained by differentiating the exact equations with respect to each of the relevant parameters. The resulting matrix of flow quantities is referred to as the Jacobi matrix. The subsequent procedure is then straightforward. The method was tested for two dimensional supersonic flow past an airfoil, with airfoil thickness, camber, and angle of attack varied. This approach has great potential value for rapidly assessing the effect of design changes. The other focus of the work was on problems in fluid stability, bifurcations, and turbulence

    Dynamics of bidisperse suspensions under stokes flows: linear shear flow and eedimentation

    Get PDF
    Sedimenting and sheared bidisperse homogeneous suspensions of non-Brownian particles are investigated by numerical simulations in the limit of vanishing small Reynolds number and negligible inertia of the particles. The numerical approach is based on the solution of the three-dimensional Stokes equations forced by the presence of the dispersed phase. Multi-body hydrodynamic interactions are achieved by a low order multipole expansion of the velocity perturbation. The accuracy of the model is validated on analytic solutions of generic flow configurations involving a pair of particles. The first part of the paper aims at investigating the dynamics of monodisperse and bidisperse suspensions embedded in a linear shear flow. The macroscopic transport properties due to hydrodynamic and non hydrodynamic interactions (short range repulsion force) show good agreement with previous theoretical and experimental works on homogeneous monodisperse particles. Increasing the volumetric concentration of the suspension leads to an enhancement of particle fluctuations and self-diffusion. The velocity fluctuation tensor scales linearly up to 15% concentration. Multi-body interactions weaken the correlation of velocity fluctuations and lead to a diffusion like motion of the particles. Probability density functions show a clear transition from Gaussian to exponential tails while the concentration decreases. The behavior of bidisperse suspensions is more complicated, since the respective amount of small and large particles modifies the overall response of the flow. Our simulations show that, for a given concentration of both species, when the size ratio varies from 1 to 2.5, the fluctuation level of the small particles is strongly enhanced. A similar trend is observed on the evolution of the shear induced self-diffusion coefficient. Thus for a fixed and total concentration, increasing the respective volume fraction of large particles can double the velocity fluctuation of small particles. In the second part of the paper, the sedimentation of a single test particle embedded in a suspension of monodisperse particles allows the determination of basic hydrodynamic interactions involved in a bidisperse suspension. Good agreement is achieved when comparing the mean settling velocity and fluctuations levels of the test sphere with experiments. Two distinct behaviors are observed depending on the physical properties of the particle. The Lagrangian velocity autocorrelation function has a negative region when the test particle has a settling velocity twice as large as the reference velocity of the surrounding suspension. The test particle settles with a zig-zag vertical trajectory while a strong reduction of horizontal dispersion occurs. Then, several configurations of bidisperse settling suspensions are investigated. Mean velocity depends on concentration of both species, density ratio and size ratio. Results are compared with theoretical predictions at low concentration and empirical correlations when the assumption of a dilute regime is no longer valid. For particular configurations, a segregation instability sets in. Columnar patterns tend to collect particles of the same species and eventually a complete separation of the suspension is observed. The instability threshold is compared with experiments in the case of suspensions of buoyant and heavy spheres. The basic features are well reproduced by the simulation model

    Modulation of homogeneous turbulence seeded with finite size bubbles or particles

    Get PDF
    The dynamics of homogeneous, isotropic turbulence seeded with finite sized particles or bubbles is investigated in a series of numerical simulations, using the force-coupling method for the particle phase and low wavenumber forcing of the flow to sustain the turbulence. Results are given on the modulation of the turbulence due to massless bubbles, neutrally buoyant particles and inertial particles of specific density 1.4 at volumetric concentrations of 6%. Buoyancy forces due to gravity are excluded to emphasize finite size and inertial effects for the bubbles or particles and their interactions with the turbulence. Besides observing the classical entrapment of bubbles and the expulsion of inertial particles by vortex structures, we analyze the Lagrangian statistics for the velocity and acceleration of the dispersed phase. The turbulent fluctuations are damped at mid-range wavenumbers by the bubbles or particles while the smallscale kinetic energy is significantly enhanced. Unexpectedly, the modulation of turbulence depends only slightly on the dispersion characteristics (bubble entrapment in vortices or inertial sweeping of the solid particles) but is closely related to the stresslet component (finite size effect) of the flow disturbances. The pivoting wavenumber characterizing the transition from damped to enhanced energy content is shown to vary with the size of the bubbles or particles. The spectrum for the energy transfer by the particle phase is examined and the possibility of representing this, at large scales, through an additional effective viscosity is discussed

    Particle self-diffusion in a viscous shear flow: from hydrodynamic interactions to collisional effects

    Get PDF
    Particle shear-induced self-diffusion is investigated at low Reynolds and variable Stokes (St) numbers. We simulated the suspension hydrodynamics for St<<1 by using the Force Coupling Method. For suspensions with finite particle inertia (finite St), we proposed a new Eulerian prediction based on the kinetic theory for granular flows which have been validated by discrete particle simulations assuming Stokes drag and binary collisions (for low to moderate solid concentration). On the microscopic level, the particle velocity fluctuations have a Gaussian distribution shape for both high and vanishing St, whereas they show a highly peaked distribution for suspensions characterized by St~O(1) and low solid volume fractions. On the macroscopic level, the self-diffusion tensor is strongly anisotropic and the diffusive behavior becomes more prominent when the particle inertia increases. The self-diffusion coefficients decrease with concentration at high St. The results will be analyzed in terms of analogies and differences between the two regimes investigated (hydrodynamic interactions or collisional effects)

    Surface composition and structure of Co\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e(110) and the effect of impurity segregation

    Get PDF
    The Co3O4 (110) single crystal surface has been characterized by low energy electron diffraction (LEED), Auger electron spectroscopy, and x-ray photoelectron spectroscopy (XPS). LEED analysis of the clean Co3O4 (110) spinel surface shows a well-ordered pattern with sharp diffraction features. The XPS spectra are consistent with stoichiometric Co3O4 as determined by the concentration ratio of oxygen to cobalt (CO /CCo) and spectral peak shape. In particular, the cobalt 2p XPS spectra are characteristic of the spinel structure with Co3+ occupying octahedral sites and Co2+ in tetrahedral sites within the lattice. During prolonged heating at 630 K, bulk impurities of K, Ca, Na, and Cu segregated to the surface. Sodium desorbed from the surface as NaOH at 825 K, potassium and calcium were only removed by sputtering since no desorption from the surface was detected for temperatures up to 1000 K. Copper also disappeared upon heating above 700 K, most likely by desorbing although the possibility of diffusion back into the bulk could not be eliminated. The appearance of copper impurities correlated with Co3O4 (110) surface reduction to CoO, and the surface could not be fully reoxidized even upon extended oxygen annealing as long as the copper impurity remained on the surface. Upon removal of the Cu from the near-surface region, the surface was easily reoxidized to Co3O4 by O2

    Hypoplastic Left Heart Syndrome Current Considerations and Expectations

    Get PDF
    In the recent era, no congenital heart defect has undergone a more dramatic change in diagnostic approach, management, and outcomes than hypoplastic left heart syndrome (HLHS). During this time, survival to the age of 5 years (including Fontan) has ranged from 50% to 69%, but current expectations are that 70% of newborns born today with HLHS may reach adulthood. Although the 3-stage treatment approach to HLHS is now well founded, there is significant variation among centers. In this white paper, we present the current state of the art in our understanding and treatment of HLHS during the stages of care: 1) pre-Stage I: fetal and neonatal assessment and management; 2) Stage I: perioperative care, interstage monitoring, and management strategies; 3) Stage II: surgeries; 4) Stage III: Fontan surgery; and 5) long-term follow-up. Issues surrounding the genetics of HLHS, developmental outcomes, and quality of life are addressed in addition to the many other considerations for caring for this group of complex patients

    Concert recording 2016-11-15

    Get PDF
    [Track 1]. Subjugation. Connection [Track 2]. Captivation / Durgan Maxey -- [Track 3]. Fight / Bryce Owens -- [Track 4]. Overture to Stay / Joshua Bland -- [Track 5]. A cellist\u27s legacy. Part I [Track 6]. Part II / Eric Dreggors -- [Track 7]. Evening prayer / Robbie Baker -- [Track 8]. Elegy / Brandon Wade -- [Track 9]. The grotesques trio. Gargoyles [Track 10]. Chimera [Track 11]. Grotesques / Marissa Johnson -- [Track 12]. Crosshair / Joshua Bland -- [Track 13]. Nightwind sings / L. Coley Pitchford -- [Track 14]. Six reflections through poetry. Memories (Walt Whitman) [Track 15]. The musician\u27s wife (Weldon Kees) [Track 16]. The road not taken (Robert Frost) [Track 17]. Lessons (Whitman) [Track 18]. Stronger lessons (Whitman) [Track 19]. O me! O life! (Whitman) / Nick Vecchio -- [Tracks 20-21]. String quartet #1 / Jeremiah Flannery -- [Track 22]. Tides. Morning tide [Track 23]. Bore tide / Elizabeth Greener -- [Track 24]. Shepherd\u27s contemplation / Robbie Baker -- Green grass / arranged by Eva Martin -- [Track 25]. Urbe fracta est II. A prayer for Jerusalem / Joshua Bland

    Turbulence drives microscale patches of motile phytoplankton

    Get PDF
    Patchiness plays a fundamental role in phytoplankton ecology by dictating the rate at which individual cells encounter each other and their predators. The distribution of motile phytoplankton species is often considerably more patchy than that of non-motile species at submetre length scales, yet the mechanism generating this patchiness has remained unknown. Here we show that strong patchiness at small scales occurs when motile phytoplankton are exposed to turbulent flow. We demonstrate experimentally that Heterosigma akashiwo forms striking patches within individual vortices and prove with a mathematical model that this patchiness results from the coupling between motility and shear. When implemented within a direct numerical simulation of turbulence, the model reveals that cell motility can prevail over turbulent dispersion to create strong fractal patchiness, where local phytoplankton concentrations are increased more than 10-fold. This "unmixing" mechanism likely enhances ecological interactions in the plankton and offers mechanistic insights into how turbulence intensity impacts ecosystem productivity
    corecore