5 research outputs found

    Effect of Particle Size on the Orientation and Order of Assemblies of Functionalized Microscale Cubes Formed at the Water/Air Interface

    No full text
    The impact of the particle size and wettability on the orientation and order of assemblies obtained by self-organization of functionalized microscale polystyrene cubes at the water/air interface is reported. An increase in the hydrophobicity of 10- and 5-μm-sized self-assembled monolayer-functionalized polystyrene cubes, as assessed by independent water contact angle measurements, led to a change of the preferred orientation of the assembled cubes at the water/air interface from face-up to edge-up and further to vertex-up, irrespective of microcube size. This tendency is consistent with our previous studies with 30-μm-sized cubes. However, the transitions among these orientations and the capillary force-induced structures, which change from flat plate to tilted linear and further to close-packed hexagonal arrangements, were observed to shift to larger contact angles for smaller cube size. Likewise, the order of the formed aggregates decreased significantly with decreasing cube size, which is tentatively attributed to the small ratio of inertial force to capillary force for smaller cubes in disordered aggregates, which results in more difficulties to reorient in the stirring process. Experiments with small fractions of larger cubes added to the water/air interface increased the order of smaller homo-aggregates to values similar to neat 30 μm cube assemblies. Hence, collisions of larger cubes or aggregates are shown to play a decisive role in breaking metastable structures to approach a global energy minimum assembly

    A Graphene-Based Hot Electron Transistor

    No full text
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 10<sup>4</sup>

    Integrated ultrafast all-optical polariton transistors

    No full text
    The clock speed of electronic circuits has been stagnant at a few gigahertz for almost two decades because of the breakdown of Dennard scaling, which states that by shrinking the size of transistors they can operate faster while maintaining the same power consumption. Optical computing could overcome this roadblock, but the lack of materials with suitably strong nonlinear interactions needed to realize all-optical switches has, so far, precluded the fabrication of scalable architectures. Recently, microcavities in the strong light-matter interaction regime enabled all-optical transistors which, when used with an embedded organic material, can operate even at room temperature with sub-picosecond switching times, down to the single-photon level. However, the vertical cavity geometry prevents complex circuits with on-chip coupled transistors. Here, by leveraging silicon photonics technology, we show exciton-polariton condensation at ambient conditions in micrometer-sized, fully integrated high-index contrast grating microcavities filled with an optically active polymer. By coupling two resonators and exploiting seeded polariton condensation, we demonstrate ultrafast all-optical transistor action and cascadability. Our experimental findings open the way for scalable, compact all-optical integrated logic circuits that could process optical signals two orders of magnitude faster than their electrical counterparts

    High-Performance Hybrid Electronic Devices from Layered PtSe<sub>2</sub> Films Grown at Low Temperature

    No full text
    Layered two-dimensional (2D) materials display great potential for a range of applications, particularly in electronics. We report the large-scale synthesis of thin films of platinum diselenide (PtSe<sub>2</sub>), a thus far scarcely investigated transition metal dichalcogenide. Importantly, the synthesis by thermally assisted conversion is performed at 400 °C, representing a breakthrough for the direct integration of this material with silicon (Si) technology. Besides the thorough characterization of this 2D material, we demonstrate its promise for applications in high-performance gas sensing with extremely short response and recovery times observed due to the 2D nature of the films. Furthermore, we realized vertically stacked heterostructures of PtSe<sub>2</sub> on Si which act as both photodiodes and photovoltaic cells. Thus, this study establishes PtSe<sub>2</sub> as a potential candidate for next-generation sensors and (opto-)­electronic devices, using fabrication protocols compatible with established Si technologies

    Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe<sub>2</sub> Films

    No full text
    Two-dimensional (2D) layered materials are ideal for micro- and nanoelectromechanical systems (MEMS/NEMS) due to their ultimate thinness. Platinum diselenide (PtSe<sub>2</sub>), an exciting and unexplored 2D transition metal dichalcogenide material, is particularly interesting because its low temperature growth process is scalable and compatible with silicon technology. Here, we report the potential of thin PtSe<sub>2</sub> films as electromechanical piezoresistive sensors. All experiments have been conducted with semimetallic PtSe<sub>2</sub> films grown by thermally assisted conversion of platinum at a complementary metal–oxide–semiconductor (CMOS)-compatible temperature of 400 °C. We report high negative gauge factors of up to −85 obtained experimentally from PtSe<sub>2</sub> strain gauges in a bending cantilever beam setup. Integrated NEMS piezoresistive pressure sensors with freestanding PMMA/PtSe<sub>2</sub> membranes confirm the negative gauge factor and exhibit very high sensitivity, outperforming previously reported values by orders of magnitude. We employ density functional theory calculations to understand the origin of the measured negative gauge factor. Our results suggest PtSe<sub>2</sub> as a very promising candidate for future NEMS applications, including integration into CMOS production lines
    corecore