83 research outputs found

    Projected 21st-Century Glacial Lake Evolution in High Mountain Asia

    Get PDF
    In High Mountain Asia (HMA), rising temperatures and retreating glaciers are leading to the formation of new glacial lakes and the expansion of existing ones. The sudden release of water from such lakes can lead to devastating glacial lake outburst floods (GLOF) threatening people and infrastructure for many kilometers downstream. Therefore, information on future glacial lakes, e.g., their location, area and volume as well as the timing of their development, is vital for sustainable development of settlements and infrastructures. In this study, we present comprehensive estimates for future glacial lake development in HMA with unprecedented temporal resolution. We rely on an ensemble of fifteen global climate models using the newest CMIP6 data and employ a set of four Shared Socioeconomic Pathway (SSP) scenarios. With the Open Global Glacier Model (OGGM), we use a modeling framework that explicitly simulates glacier dynamics in order to model glacier change until 2100 and estimate the formation period for each of the 2,700 largest future glacial lakes (>0.1 km2) in HMA. We estimate the glacial lake area in the entire region to grow by 474 ± 121 km2 for SSP126 and 833 ± 148 km2 for SSP585. Following recent estimates of currently existing glacial lakes (>0.1 km2), this would constitute an increase in lake area of ∌120–∌210% in 2100 compared to 2018. The lake volume is expected to increase by 22.8 ± 6.7 km3 for SSP126 and 39.7 ± 7.7 km3 for SSP585. This range includes a drastic tenfold increase in lake volume, from estimated 3.9 km3 in 2018 to 43.6 ± 7.7 km3 in 2100. However, there is a considerable spread between total and relative increase in glacial lake area and volume for different sub-regions of High Mountain Asia. As both, lake area and lake volume, could to lead to an increase in GLOF risk, the results emphasize the urgent need for more localized, in-depth studies at especially vulnerable locations in order to enable local communities to adapt to emerging challenges, to implement risk minimization measures, and to improve sustainable development in High Mountain Asia.Peer Reviewe

    Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach

    Get PDF
    Due to the complexity of treating moisture in supraglacial debris, surface energy balance models to date have neglected moisture infiltration and phase changes in the debris layer. The latent heat flux (QL) is also often excluded due to the uncertainty in determining the surface vapour pressure. To quantify the importance of moisture on the surface energy and climatic mass balance (CMB) of debris-covered glaciers, we developed a simple reservoir parameterization for the debris ice and water content, as well as an estimation of the latent heat flux. The parameterization was incorporated into a CMB model adapted for debris-covered glaciers. We present the results of two point simulations, using both our new “moist” and the conventional “dry” approaches, on the Miage Glacier, Italy, during summer 2008 and fall 2011. The former year coincides with available in situ glaciological and meteorological measurements, including the first eddy-covariance measurements of the turbulent fluxes over supraglacial debris, while the latter contains two refreeze events that permit evaluation of the influence of phase changes. The simulations demonstrate a clear influence of moisture on the glacier energy and mass-balance dynamics. When water and ice are considered, heat transmission to the underlying glacier ice is lower, as the effective thermal diffusivity of the saturated debris layers is reduced by increases in both the density and the specific heat capacity of the layers. In combination with surface heat extraction by QL, subdebris ice melt is reduced by 3.1% in 2008 and by 7.0% in 2011 when moisture effects are included. However, the influence of the parameterization on the total accumulated mass balance varies seasonally. In summer 2008, mass loss due to surface vapour fluxes more than compensates for the reduction in ice melt, such that the total ablation increases by 4.0 %. Conversely, in fall 2011, the modulation of basal debris temperature by debris ice results in a decrease in total ablation of 2.1 %. Although the parameterization is a simplified representation of the moist physics of glacier debris, it is a novel attempt at including moisture in a numerical model of debris-covered glaciers and one that opens up additional avenues for future research

    Reconstruction of Past Glacier Changes with an Ice-Flow Glacier Model: Proof of Concept and Validation

    Get PDF
    Estimations of global glacier mass changes over the course of the 20th century require automated initialization methods, allowing the reconstruction of past glacier states from limited information. In a previous study, we developed a method to initialize the Open Global Glacier Model (OGGM) from past climate information and present-day geometry alone. Tested in an idealized framework, this method aimed to quantify how much information present-day glacier geometry carries about past glacier states. The method was not applied to real-world cases, and therefore, the results were not comparable with observations. This study closes the gap to real-world cases by introducing a glacier-specific calibration of the mass balance model. This procedure ensures that the modeled present-day geometry matches the observed area and that the past glacier evolution is consistent with bias-corrected past climate time series. We apply the method to 517 glaciers, spread globally, for which either mass balance observations or length records are available, and compare the observations to the modeled reconstructed glacier changes. For the validation of the initialization method, we use multiple measures of reconstruction skill (e.g., MBE, RMSE, and correlation). We find that the modeled mass balances and glacier lengths are in good agreement with the observations, especially for glaciers with many observation years. These results open the door to a future global application

    Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models

    Get PDF
    Energy and mass-balance modelling of glaciers is a key tool for climate impact studies of future glacier behaviour. By incorporating many of the physical processes responsible for surface accumulation and ablation, they offer more insight than simpler statistical models and are believed to suffer less from problems of stationarity when applied under changing climate conditions. However, this view is challenged by the widespread use of parameterizations for some physical processes which introduces a statistical calibration step. We argue that the reported uncertainty in modelled mass balance (and associated energy flux components) are likely to be understated in modelling studies that do not use spatio-temporal cross-validation and use a single performance measure for model optimization. To demonstrate the importance of these principles, we present a rigorous sensitivity and uncertainty assessment workflow applied to a modelling study of two glaciers in the European Alps, extending classical best guess approaches. The procedure begins with a reduction of the model parameter space using a global sensitivity assessment that identifies the parameters to which the model responds most sensitively. We find that the model sensitivity to individual parameters varies considerably in space and time, indicating that a single stated model sensitivity value is unlikely to be realistic. The model is most sensitive to parameters related to snow albedo and vertical gradients of the meteorological forcing data. We then apply a Monte Carlo multi-objective optimization based on three performance measures: model bias and mean absolute deviation in the upper and lower glacier parts, with glaciological mass balance data measured at individual stake locations used as reference. This procedure generates an ensemble of optimal parameter solutions which are equally valid. The range of parameters associated with these ensemble members are used to estimate the cross-validated uncertainty of the model output and computed energy components. The parameter values for the optimal solutions vary widely, and considering longer calibration periods does not systematically result in better constrained parameter choices. The resulting mass balance uncertainties reach up to 1300 kg m−2, with the spatial and temporal transfer errors having the same order of magnitude. The uncertainty of surface energy flux components over the ensemble at the point scale reached up to 50 % of the computed flux. The largest absolute uncertainties originate from the short-wave radiation and the albedo parameterizations, followed by the turbulent fluxes. Our study highlights the need for due caution and realistic error quantification when applying such models to regional glacier modelling efforts, or for projections of glacier mass balance in climate settings that are substantially different from the conditions in which the model was optimized.publishedVersio

    Prominent Midlatitude Circulation Signature in High Asia's Surface Climate During Monsoon

    Get PDF
    ©2017. American Geophysical UnionHigh Asia has experienced strong environmental changes in recent decades, as evident in records of glaciers, lakes, tree rings, and vegetation. The multiscale understanding of the climatic drivers, however, is still incomplete. In particular, few systematic assessments have evaluated to what degree, if at all, the midlatitude westerly circulation modifies local surface climates in the reach of the Indian Summer Monsoon. This paper shows that a southward shift of the upper‐tropospheric westerlies contributes significantly to climate variability in the core monsoon season (July–September) by two prominent dipole patterns at the surface: cooling in the west of High Asia contrasts with warming in the east, while moist anomalies in the east and northwest occur with drying along the southwestern margins. Circulation anomalies help to understand the dipoles and coincide with shifts in both the westerly wave train and the South Asian High, which imprint on air mass advection and local energy budgets. The relation of the variabilities to a well‐established index of midlatitude climate dynamics allows future research on climate proxies to include a fresh hypothesis for the interpretation of environmental changes

    Which glaciers are the largest in the world?

    Full text link
    Glacier monitoring has been internationally coordinated for more than 125 years. Despite this long history, there is no authoritative answer to the popular question: ‘Which glaciers are the largest in the world?’ Here, we present the first systematic assessment of this question and identify the largest glaciers in the world – distinct from the two ice sheets in Greenland and Antarctica but including the glaciers on the Antarctic Peninsula. We identify the largest glaciers in two domains: on each of the seven geographical continents and in the 19 first-order glacier regions defined by the Global Terrestrial Network for Glaciers. Ranking glaciers by area is non-trivial. It depends on how a glacier is defined and mapped and also requires differentiating between a glacier and a glacier complex, i.e. glaciers that meet at ice divides such as ice caps and icefields. It also depends on the availability of a homogenized global glacier inventory. Using separate rankings for glaciers and glacier complexes, we find that the largest glacier complexes have areas on the order of tens of thousands of square kilometers whereas the largest glaciers are several thousands of square kilometers. The world's largest glaciers and glacier complexes are located in the Antarctic, Arctic and Patagonia

    Glacier projections sensitivity to temperature-index model choices and calibration strategies

    Get PDF
    The uncertainty of glacier change projections is largely influenced by glacier models. In this study, we focus on temperature-index mass-balance (MB) models and their calibration. Using the Open Global Glacier Model (OGGM), we examine the influence of different surface-type dependent degree-day factors, temporal climate resolutions (daily, monthly) and downscaling options (temperature lapse rates, temperature and precipitation corrections) for 88 glaciers with in-situ observations. Our findings indicate that higher spatial and temporal resolution observations enhance MB gradient representation due to an improved calibration. The addition of surface-type distinction in the model also improves MB gradients, but the lack of independent observations limits our ability to demonstrate the added value of increased model complexity. Some model choices have systematic effects, for example weaker temperature lapse rates result in smaller projected glaciers. However, we often find counter balancing effects, such as the sensitivity to different degree-day factors for snow, firn and ice, which depends on how the glacier accumulation area ratio changes in the future. Similarly, using daily versus monthly climate data can affect glaciers differently depending on the shifting balance between melt and solid precipitation thresholds. Our study highlights the importance of considering minor model design differences to predict future glacier volumes and runoff accurately

    Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska

    Get PDF
    Frontal ablation is a major component of the mass budget of calving glaciers, strongly affecting their dynamics. Most global-scale ice volume estimates to date still suffer from considerable uncertainties related to (i) the implemented frontal ablation parameterization or (ii) not accounting for frontal ablation at all in the glacier model. To improve estimates of the ice thickness distribution of glaciers, it is thus important to identify and test low-cost and robust parameterizations of this process. By implementing such parameterization into the ice thickness estimation module of the Open Global Glacier Model (OGGM v1.1.2), we conduct a first assessment of the impact of accounting for frontal ablation on the estimate of ice stored in glaciers in Alaska. We find that inversion methods based on mass conservation systematically underestimate the mass turnover and, therefore, the thickness of tidewater glaciers when neglecting frontal ablation. This underestimation can amount to up to 19 % on a regional scale and up to 30 % for individual glaciers. The effect is independent of the size of the glacier. Additionally, we perform different sensitivity experiments to study the influence of (i) a constant of proportionality (k) used in the frontal ablation parameterization, (ii) Glen’s temperature-dependent creep parameter (A) and (iii) a sliding velocity parameter (fs) on the regional dynamics of Alaska tidewater glaciers. OGGM is able to reproduce previous regional frontal ablation estimates, applying a number of combinations of values for k, Glen’s A and fs. Our sensitivity studies also show that differences in thickness between accounting for and not accounting for frontal ablation occur mainly at the lower parts of the glacier, both above and below sea level. This indicates that not accounting for frontal ablation will have an impact on the estimate of the glaciers’ potential contribution to sea-level rise. Introducing frontal ablation increases the volume estimate of Alaska marine-terminating glaciers from 9.18±0.62 to 10.61±0.75 mm s.l.e, of which 1.52±0.31 mm s.l.e (0.59±0.08 mm s.l.e when ignoring frontal ablation) are found to be below sea level

    Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes

    Get PDF
    In the semi-arid Peruvian Andes, the growing season is mostly determined by the timing of the onset and retreat of the wet season, to which annual crop yields are highly sensitive. Recently, local farmers in the Rio Santa basin (RSB) reported more erratic rainy season onsets and further challenges related to changes in rainfall characteristics. Previous studies based on local rain gauges, however, did not find any significant long-term rainfall changes, potentially linked to the scarce data basis and inherent difficulties in capturing the highly variable rainfall distribution typical for complex mountain terrain. To date, there remains considerable uncertainty in the RSB regarding changes in plant-available water over the last decades. In this study, we exploit satellite-derived information of high-resolution vegetation greenness as an integrated proxy to derive variability and trends of plant water availability. By combining MODIS Aqua and Terra vegetation indices (VIs), datasets of precipitation (both for 2000–2020) and soil moisture (since 2015), we explore recent spatio-temporal changes in the vegetation growing season. We find the Normalized Difference Vegetation Index (NDVI) to be coupled to soil moisture on a sub-seasonal basis, while NDVI and rainfall only coincide on interannual timescales. Over 20 years, we find significant greening in the RSB, particularly pronounced during the dry season (austral winter), indicating an overall increase in plant-available water over the past 2 decades. The start of the growing season (SOS) exhibits high interannual variability of up to 2 months compared to the end of the growing season (EOS), which varies by up to 1 month, therefore dominating the variability of the growing season length (LOS). The EOS becomes significantly delayed over the analysis period, matching the observed dry-season greening. While both in situ and gridded rainfall datasets show incoherent changes in annual rainfall for the region, Climate Hazards InfraRed Precipitation with Station data (CHIRPS) rainfall suggests significant positive dry-season trends for 2 months coinciding with the most pronounced greening. As the greening signal is strongly seasonal and reaches high altitudes on unglaciated valley slopes, we cannot link this signal to water storage changes on timescales beyond one rainy season, making interannual rainfall variability the most likely driver. Exploring El Niño–Southern Oscillation (ENSO) control on greening, we find an overall increased LOS linked to an earlier SOS in El Niño years, which however cannot explain the observed greening and delayed EOS. While our study could not corroborate anecdotal evidence of recent changes, we confirm that the SOS is highly variable and conclude that rainfed farming in the RSB would profit from future efforts being directed towards improving medium-range forecasts of the rainy season onset
    • 

    corecore