393 research outputs found

    Multipartite non-locality in a thermalized Ising spin-chain

    Get PDF
    We study multipartite correlations and non-locality in an isotropic Ising ring under transverse magnetic field at both zero and finite temperature. We highlight parity-induced differences between the multipartite Bell-like functions used in order to quantify the degree of non-locality within a ring state and reveal a mechanism for the passive protection of multipartite quantum correlations against thermal spoiling effects that is clearly related to the macroscopic properties of the ring model.Comment: 8 pages, 6 figures, RevTeX4, Published versio

    Localization-like effect in two-dimensional alternate quantum walks with periodic coin operations

    Get PDF
    Exploiting multi-dimensional quantum walks as feasible platforms for quantum computation and quantum simulation is attracting constantly growing attention from a broad experimental physics community. Here, we propose a two-dimensional quantum walk scheme with a single-qubit coin that presents, in the considered regimes, a strong localization-like effect on the walker. The result could provide new possible directions for the implementation of quantum algorithms or from the point of view of quantum simulation. We characterize the localization-like effect in terms of the parameters of a step-dependent qubit operation that acts on the coin space after any standard coin operation, showing that a proper choice can guarantee a non-negligible probability of finding the walker in the origin even for large times. We finally discuss the robustness to imperfections, a qualitative relation with coherences behavior, and possible experimental realizations of this model with the current state-of-the-art settings.Comment: 5 pages, 4 figures, RevTeX

    Macroscopicity in an optomechanical matter-wave interferometer

    Full text link
    We analyse a proposal that we have recently put forward for an interface between matter-wave and optomechanical technologies from the perspective of macroscopic quantumness. In particular, by making use of a measure of macroscopicity in quantum superpositions that is particularly well suited for continuous variables systems, we demonstrate the existence of working points for our interface at which a quantum mechanical superposition of genuinely mesoscopic states is achieved. Our proposal thus holds the potential to affirm itself as a viable atom-to-mechanics transducer of quantum coherences.Comment: Accepted for publication in Optics Communications, special issue on "Macroscopic Quantumness: Theory and Applications in Optical Sciences

    A non-equilibrium quantum Landauer principle

    Get PDF
    Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a non-phenomenological derivation of the Landauer principle which holds for generic non-equilibrium dynamics. Furthermore the bound depends on the non-unitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature.Comment: 4 pages, 2 figures, RevTeX4-1; Accepted for publication in Phys. Rev. Let

    The role of environmental correlations in the non-Markovian dynamics of a spin system

    Full text link
    We put forward a framework to study the dynamics of a chain of interacting quantum particles affected by individual or collective multi-mode environment, focussing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environmental system magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as entanglement and purity that are not observed under a separable multi-mode environment. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.Comment: 9 pages, 12 figure

    Equilibration and nonclassicality of a double-well potential

    Get PDF
    A double well loaded with bosonic atoms represents an ideal candidate to simulate some of the most interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with different temperature reservoirs. We show that thermalisation only occurs 'accidentally'. We further examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations between the wells.Comment: 10 pages, 7 figures, Close to published versio

    Structure of multipartite entanglement in random cluster-like photonic systems

    Get PDF
    Quantum networks are natural scenarios for the communication of information among distributed parties, and the arena of promising schemes for distributed quantum computation. Measurement-based quantum computing is a prominent example of how quantum networking, embodied by the generation of a special class of multipartite states called cluster states, can be used to achieve a powerful paradigm for quantum information processing. Here we analyze randomly generated cluster states in order to address the emergence of multipartite correlations as a function of the density of edges in a given underlying graph. We find that the most widespread multipartite entanglement does not correspond to the highest amount of edges in the cluster. We extend the analysis to higher dimensions, finding similar results, which suggest the establishment of small world structures in the entanglement sharing of randomised cluster states, which can be exploited in engineering more efficient quantum information carriers.Comment: 6 pages, 8 figures, revtex4-
    • …
    corecore