186 research outputs found

    Computational design of metal-supported molecular switches: Transient ion formation during light- and electron-induced isomerisation of azobenzene

    Get PDF
    In molecular nanotechnology, a single molecule is envisioned to act as the basic building block of electronic devices. Such devices may be of special interest for organic photovoltaics, data storage, and smart materials. However, more often than not the molecular function is quenched upon contact with a conducting support. Trial-and-error-based decoupling strategies via molecular functionalisation and change of substrate have in many instances proven to yield unpredictable results. The adsorbate-substrate interactions that govern the function can be understood with the help of first-principles simulation. Employing dispersion-corrected Density-Functional Theory (DFT) and linear expansion Delta-Self-Consistent-Field DFT, the electronic structure of a prototypical surface-adsorbed functional molecule, namely azobenzene adsorbed to (111) single crystal facets of copper, silver and gold, is investigated and the main reasons for the loss or survival of the switching function upon adsorption are identified. The light-induced switching ability of a functionalised derivative of azobenzene on Au(111) and azobenzene on Ag(111) and Au(111) is assessed based on the excited-state potential energy landscapes of their transient molecular ions, which are believed to be the main intermediates of the experimentally observed isomerisation reaction. We provide a rationalisation of the experimentally observed function or lack thereof that connects to the underlying chemistry of the metal-surface interaction and provides insights into general design strategies for complex light-driven reactions at metal surfaces.Comment: 14 pages, 5 figures, submitted to J. Phys. Condens. Matte

    Bistability loss as key feature in azobenzene (non-)switching on metal surfaces

    Full text link
    Coinage metal adsorbed azobenzene is investigated as prototypical molecular switch. It is shown that switching capabilities are not just lost due to excited state quenching, but already due to changes in the ground state energetics. Electron demanding coadsorbates are suggested as strategy to regain the switching function.Comment: 8 pages, 3 figure

    Assessing computationally efficient isomerization dynamics: Delta-SCF density-functional theory study of azobenzene molecular switching

    Full text link
    We present a detailed comparison of the S0, S1 (n -> \pi*) and S2 (\pi -> \pi*) potential energy surfaces (PESs) of the prototypical molecular switch azobenzene as obtained by Delta-self-consistent-field (Delta-SCF) Density-Functional Theory (DFT), time-dependent DFT (TD-DFT) and approximate Coupled Cluster Singles and Doubles (RI-CC2). All three methods unanimously agree in terms of the PES topologies, which are furthermore fully consistent with existing experimental data concerning the photo-isomerization mechanism. In particular, sum-method corrected Delta-SCF and TD-DFT yield very similar results for S1 and S2, when based on the same ground-state exchange-correlation (xc) functional. While these techniques yield the correct PES topology already on the level of semi-local xc functionals, reliable absolute excitation energies as compared to RI-CC2 or experiment require an xc treatment on the level of long-range corrected hybrids. Nevertheless, particularly the robustness of Delta-SCF with respect to state crossings as well as its numerical efficiency suggest this approach as a promising route to dynamical studies of larger azobenzene-containing systems.Comment: 25 pages, 6 figure

    Interpretation of X-ray Absorption Spectroscopy in the Presence of Surface Hybridization

    Get PDF
    X-ray absorption spectroscopy yields direct access to the electronic and geometric structure of hybrid inorganic-organic interfaces formed upon adsorption of complex molecules at metal surfaces. The unambiguous interpretation of corresponding spectra is challenged by the intrinsic geometric flexibility of the adsorbates and the chemical interactions with the interface. Density-functional theory (DFT) calculations of the extended adsorbate-substrate system are an established tool to guide peak assignment in X-ray photoelectron spectroscopy (XPS) of complex interfaces. We extend this to the simulation and interpretation of X-ray absorption spectroscopy (XAS) data in the context of functional organic molecules on metal surfaces using dispersion-corrected DFT calculations within the transition potential approach. On the example of X-ray absorption signatures for the prototypical case of 2H-porphine adsorbed on Ag(111) and Cu(111) substrates, we follow the two main effects of the molecule/surface interaction on XAS: (1) the substrate-induced chemical shift of the 1s core levels that dominates in physisorbed systems and (2) the hybridization-induced broadening and loss of distinct resonances that dominates in more chemisorbed systems.Comment: 13 pages, 4 figure

    Computational design of metal-supported molecular switches : Transient ion formation during light- and electron-induced isomerisation of azobenzene

    Get PDF
    In molecular nanotechnology, a single molecule is envisioned to act as the basic building block of electronic devices. Such devices may be of special interest for organic photovoltaics, data storage, and smart materials. However, more often than not the molecular function is quenched upon contact with a conducting support. Trial-and-error-based decoupling strategies via molecular functionalisation and change of substrate have in many instances proven to yield unpredictable results. The adsorbate-substrate interactions that govern the function can be understood with the help of rst-principles simulation. Employing dispersion-corrected Density-Functional Theory (DFT) and linear expansion Delta-Self-Consistent-Field DFT, the electronic structure of a prototypical surface-adsorbed functional molecule, namely azobenzene adsorbed to (111) single crystal facets of copper, silver and gold, is investigated and the main reasons for the loss or survival of the switching function upon adsorption are identifed. The light-induced switching ability of a functionalised derivative of azobenzene on Au(111) and azobenzene on Ag(111) and Au(111) is assessed based on the excited-state potential energy landscapes of their transient molecular ions, which are believed to be the main intermediates of the experimentally observed isomerisation reaction. We provide a rationalisation of the experimentally observed function or lack thereof that connects to the underlying chemistry of the metal-surface interaction and provides insights into general design strategies for complex light-driven reactions at metal surfaces

    Excited-state potential-energy surfaces of metal-adsorbed organic molecules from Linear Expansion \Delta-Self-Consistent Field Density-Functional Theory (\Delta SCF-DFT)

    Get PDF
    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion \Delta Self-Consistent Field (le\Delta SCF) method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method the standard Kohn-Sham equations of Density-Functional Theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.Comment: 12 pages, 4 figure

    Many-body dispersion effects in the binding of adsorbates on metal surfaces

    Get PDF
    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic--inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Phys. Rev. Lett. 108, 236402 (2012); J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid (PTCDA), and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate--surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches

    Assessing mixed quantum-classical molecular dynamics methods for nonadiabatic dynamics of molecules on metal surfaces

    Get PDF
    Mixed-quantum classical (MQC) methods for simulating the dynamics of molecules at metal surfaces have the potential to accurately and efficiently provide mechanistic insight into reactive processes. Here, we introduce simple two-dimensional models for the scattering of diatomic molecules at metal surfaces based on recently published electronic structure data. We apply several MQC methods to investigate their ability to capture how nonadiabatic effects influence molecule-metal energy transfer during the scattering process. Specifically, we compare molecular dynamics with electronic friction, Ehrenfest dynamics, Independent Electron Surface Hopping, and the Broadened Classical Master Equation approach. In the case of Independent Electron Surface Hopping, we implement a simple decoherence correction approach and assess its impact on vibrationally-inelastic scattering. Our results show that simple, low-dimensional models can be used to qualitatively capture experimentally observed vibrational energy transfer and provide insight into the relative performance of different MQC schemes. We observe that all approaches predict similar kinetic energy dependence, but return different vibrational energy distributions. Finally, by varying the molecule-metal coupling, we can assess the coupling regime in which some MQC methods become unsuitable.Comment: 15 pages, 13 figure

    Hot-electron effects during reactive scattering of H2 from Ag(111) : the interplay between mode-specific electronic friction and the potential energy landscape

    Get PDF
    The breakdown of the Born-Oppenheimer approximation gives rise to nonadiabatic effects in gas-surface reactions at metal surfaces. However, for a given reaction, it remains unclear which factors quantitatively determine whether these effects measurably contribute to surface reactivity in catalysis and photo/electrochemistry. Here, we systematically investigate hot electron effects during H2 scattering from Ag(111) using electronic friction theory. We combine first-principles calculations of tensorial friction by time-dependent perturbation theory based on Density Functional Theory and an analytical neural network representation, to overcome the limitations of existing approximations and explicitly simulate mode-specific nonadiabatic energy loss during molecular dynamics. Despite sizable hot-electron-induced energy loss, no measurable nonadiabatic effects can be found for H2 scattering on Ag(111). This is in stark contrast to previous reports for vibrationally excited H2 scattering on Cu(111). By detailed analysis of the two systems, we attribute this discrepancy to a subtle interplay between the magnitude of electronic friction along intramolecular vibration and the shape of the potential energy landscape that controls the molecular velocity at impact. On the basis of this characterization, we offer guidance for the search of highly nonadiabatic surface reactions

    Predicting long timescale kinetics under variable experimental conditions with Kinetica.jl

    Full text link
    Predicting the degradation processes of molecules over long timescales is a key aspect of industrial materials design. However, it is made computationally challenging by the need to construct large networks of chemical reactions that are relevant to the experimental conditions that kinetic models must mirror, with every reaction requiring accurate kinetic data. Here we showcase Kinetica.jl, a new software package for constructing large-scale chemical reaction networks in a fully-automated fashion by exploring chemical reaction space with a kinetics-driven algorithm; coupled to efficient machine-learning models of activation energies for sampled elementary reactions, we show how this approach readily enables generation and kinetic characterization of networks containing ∼103\sim10^{3} chemical species and 10410^{4} - 10510^{5} reactions. Symbolic-numeric modelling of the generated reaction networks is used to allow for flexible, efficient computation of kinetic profiles under experimentally-realizable conditions such as continuously-variable temperature regimes, enabling direct connection between bottom-up reaction networks and experimental observations. Highly efficient propagation of long-timescale kinetic profiles is required for automated reaction network refinement and is enabled here by a new discrete kinetic approximation. The resulting Kinetica.jl simulation package therefore enables automated generation, characterization, and long-timescale modelling of complex chemical reaction systems. We demonstrate this for hydrocarbon pyrolysis simulated over timescales of seconds, using transient temperature profiles representing those of tubular flow reactor experiments.Comment: 56 pages, 13 figure
    • …
    corecore