3,224 research outputs found

    Hardcore dimer aspects of the SU(2) Singlet wavefunction

    Full text link
    We demonstrate that any SU(2) singlet wavefunction can be characterized by a set of Valence Bond occupation numbers, testing dimer presence/vacancy on pairs of sites. This genuine quantum property of singlet states (i) shows that SU(2) singlets share some of the intuitive features of hardcore quantum dimers, (ii) gives rigorous basis for interesting albeit apparently ill-defined quantities introduced recently in the context of Quantum Magnetism or Quantum Information to measure respectively spin correlations and bipartite entanglement and, (iii) suggests a scheme to define consistently a wide family of quantities analogous to high order spin correlation. This result is demonstrated in the framework of a general functional mapping between the Hilbert space generated by an arbitrary number of spins and a set of algebraic functions found to be an efficient analytical tool for the description of quantum spins or qubits systems.Comment: 5 pages, 2 figure

    Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion

    Get PDF
    Platinum/ceria/alumina catalysts have been prepared by a sol–gel method and coated in the microchannels of stainless steel platelets. These catalysts are very active for the water-gas shift reaction between 300 and 400°C. Moreover, they are non-pyrophoric and thus well suited for the purification of hydrogen for PEM fuel cells. The obtained coatings show good adherence and catalytic activity. The influence of the amount of platinum and ceria as well as the effect of a binder on the catalytic performance has been investigated. The samples have been characterized before reaction by XRD, SEM and by N2 adsorption measurements. The kinetics, free from internal diffusion limitations, over these thin films have been described by a power law rate equation. An activation energy of 86 kJ/mol has been found and at 260 °C the TOF corresponds to 0.6 ± 0.1 s−1 for all investigated samples. The superior activity of the platelets compared to the powder samples is attributed to the diffusion limitations inside the powder pellets. Thus catalysts deposited on microstructured platelets lead to a better platinum utilization

    GreenPhylDB: A Gene Family Database for plant functional Genomics

    Get PDF
    With the increasing number of genomes being sequenced, a major objective is to transfer accurate annotation from characterised proteins to uncharacterised sequences. Consequently, comparative genomics has become a usual and efficient strategy in functional genomics. The release of various annotated genomes of plants, such as _O. sativa_ and _A. thaliana_, has allowed setting up comprehensive lists of gene families defined by automated methods. However, like for gene sequence, manual curation of gene families is an important requirement that has to be undertaken. GreenPhylDB comprises protein sequences of 12 plant species fully sequenced that were grouped into homeomorphic families using similarity-based methods. Clusters are finally processed by phylogenetic analysis to infer orthologs and paralogs that will be particularly helpful to study genome evolution. Previously, each cluster has to be curated (i.e. properly named and classified) using different sources of information. A web interface for plant gene families’ curation was developed for that purpose. This interface, accessible on GreenPhylDB ("http://greenphyl.cirad.fr":http://greenphyl.cirad.fr), centralizes external references (e.g. InterPro, KEGG, Swiss-Prot, PIRSF, Pubmed) related to all gene members of the clusters and shows statistics and automatic analysis. We believe that this synthetic view of data available for a gene cluster, combined with basic guidelines, is an efficient way to provide reliable method for gene family annotations

    Nonperturbative Functional Renormalization Group for Random Field Models. III: Superfield formalism and ground-state dominance

    Full text link
    We reformulate the nonperturbative functional renormalization group for the random field Ising model in a superfield formalism, extending the supersymmetric description of the critical behavior of the system first proposed by Parisi and Sourlas [Phys. Rev. Lett. 43, 744 (1979)]. We show that the two crucial ingredients for this extension are the introduction of a weighting factor, which accounts for ground-state dominance when multiple metastable states are present, and of multiple copies of the original system, which allows one to access the full functional dependence of the cumulants of the renormalized disorder and to describe rare events. We then derive exact renormalization group equations for the flow of the renormalized cumulants associated with the effective average action.Comment: 28 page

    Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta

    Get PDF
    Rivers and turbidity currents are the two most important sediment transport processes by volume on Earth. Various hypotheses have been proposed for triggering of turbidity currents offshore from river mouths, including direct plunging of river discharge, delta mouth bar flushing or slope failure caused by low tides and gas expansion, earthquakes and rapid sedimentation. During 2011, 106 turbidity currents were monitored at Squamish Delta, British Columbia. This enables statistical analysis of timing, frequency and triggers. The largest peaks in river discharge did not create hyperpycnal flows. Instead, delayed delta-lip failures occurred 8–11 h after flood peaks, due to cumulative delta top sedimentation and tidally-induced pore pressure changes. Elevated river discharge is thus a significant control on the timing and rate of turbidity currents but not directly due to plunging river water. Elevated river discharge and focusing of river discharge at low tides cause increased sediment transport across the delta-lip, which is the most significant of all controls on flow timing in this setting

    The far infra-red SEDs of main sequence and starburst galaxies

    Get PDF
    We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies (M1010M_{\star}\gtrsim10^{10} h1h^{-1}M_{\odot}) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass (MM_{\star}) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and MM_\star, up to redshift z6z\sim6. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts (0.5z40.5\lesssim z\lesssim4) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at z2z\gtrsim2, selected here to have elevated sSFRs>10×>10\times the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.Comment: 20 pages, 13 figures. Accepted to MNRA
    corecore