18,394 research outputs found

    On the contribution of binocular disparity to the long-term memory for natural scenes

    Get PDF
    Binocular disparity is a fundamental dimension defining the input we receive from the visual world, along with luminance and chromaticity. In a memory task involving images of natural scenes we investigate whether binocular disparity enhances long-term visual memory. We found that forest images studied in the presence of disparity for relatively long times (7s) were remembered better as compared to 2D presentation. This enhancement was not evident for other categories of pictures, such as images containing cars and houses, which are mostly identified by the presence of distinctive artifacts rather than by their spatial layout. Evidence from a further experiment indicates that observers do not retain a trace of stereo presentation in long-term memory

    Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-Resolution Cross-Correlation Spectroscopy

    Get PDF
    Hi-resolution spectroscopy (R > 25,000) has recently emerged as one of the leading methods to detect atomic and molecular species in the atmospheres of exoplanets. However, it has so far been lacking in a robust method to extract quantitative constraints on temperature structure and molecular/atomic abundances. In this work we present a novel Bayesian atmospheric retrieval framework applicable to high resolution cross-correlation spectroscopy (HRCCS) that relies upon the cross-correlation between data and models to extract the planetary spectral signal. We successfully test the framework on simulated data and show that it can correctly determine Bayesian credibility intervals on atmospheric temperatures and abundances allowing for a quantitative exploration of the inherent degeneracies. Furthermore, our new framework permits us to trivially combine and explore the synergies between HRCCS and low-resolution spectroscopy (LRS) to provide maximal leverage on the information contained within each. This framework also allows us to quantitatively assess the impact of molecular line opacities at high resolution. We apply the framework to VLT CRIRES K-band spectra of HD 209458 b and HD 189733 b and retrieve abundant carbon monoxide but sub-solar abundances for water, largely invariant under different model assumptions. This confirms previous analysis of these datasets, but is possibly at odds with detections of water at different wavelengths and spectral resolutions. The framework presented here is the first step towards a true synergy between space observatories and ground-based hi-resolution observations.Comment: Accepted Version (01/16/19

    Orbital currents, anapoles, and magnetic quadrupoles in CuO

    Full text link
    We show that orbital currents in a CuO2 plane, if present, should be described by two independent parity and time-reversal odd order parameters, a toroidal dipole (anapole) and a magnetic quadrupole. Based on this, we derive the resonant X-ray diffraction cross-section for monoclinic CuO at the antiferromagnetic wavevector and show that the two order parameters can be disentangled. From our analysis, we examine a recent claim of detecting anapoles in CuO.Comment: 7 pages, 5 figure

    The magnetic ground state of Sr2IrO4 and implications for second-harmonic generation

    Full text link
    The currently accepted magnetic ground state of Sr2IrO4 (the -++- state) preserves inversion symmetry. This is at odds, though, with recent experiments that indicate a magnetoelectric ground state, leading to the speculation that orbital currents or more exotic magnetic multipoles might exist in this material. Here, we analyze various magnetic configurations and demonstrate that two of them, the magnetoelectric -+-+ state and the non-magnetoelectric ++++ state, can explain these recent second-harmonic generation (SHG) experiments, obviating the need to invoke orbital currents. The SHG-probed magnetic order parameter has the symmetry of a parity-breaking multipole in the -+-+ state and of a parity-preserving multipole in the ++++ state. We speculate that either might have been created by the laser pump used in the experiments. An alternative is that the observed magnetic SHG signal is a surface effect. We suggest experiments that could be performed to test these various possibilities, and also address the important issue of the suppression of the RXS intensity at the L2 edge.Comment: 28 pages, 8 figures, v3 - an expanded discussion of the origin of the SHG signa

    Localization and interactions in topological and non-topological bands in two dimensions

    Full text link
    A two-dimensional electron gas in a high magnetic field displays macroscopically degenerate Landau levels, which can be split into Hofstadter subbands by means of a weak periodic potential. By carefully engineering such a potential, one can precisely tune the number, bandwidths, bandgaps and Chern character of these subbands. This allows a detailed study of the interplay of disorder, interaction and topology in two dimensional systems. We first explore the physics of disorder and single-particle localization in subbands derived from the lowest Landau level, that nevertheless may have a topological nature different from that of the entire lowest Landau level. By projecting the Hamiltonian onto subbands of interest, we systematically explore the localization properties of single-particle eigenstates in the presence of quenched disorder. We then introduce electron-electron interactions and investigate the fate of many-body localization in subbands of varying topological character

    Trust-Based Fusion of Untrustworthy Information in Crowdsourcing Applications

    No full text
    In this paper, we address the problem of fusing untrustworthy reports provided from a crowd of observers, while simultaneously learning the trustworthiness of individuals. To achieve this, we construct a likelihood model of the userss trustworthiness by scaling the uncertainty of its multiple estimates with trustworthiness parameters. We incorporate our trust model into a fusion method that merges estimates based on the trust parameters and we provide an inference algorithm that jointly computes the fused output and the individual trustworthiness of the users based on the maximum likelihood framework. We apply our algorithm to cell tower localisation using real-world data from the OpenSignal project and we show that it outperforms the state-of-the-art methods in both accuracy, by up to 21%, and consistency, by up to 50% of its predictions. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved

    Differences in illumination estimation in #thedress

    Get PDF
    We investigated whether people who report different colors for #thedress do so because they have different assumptions about the illumination in #thedress scene. We introduced a spherical illumination probe (Koenderink, Pont, van Doorn, Kappers, & Todd, 2007) into the original photograph, placed in fore-, or background of the scene and—for each location—let observers manipulate the probe´s chromaticity, intensity and the direction of the illumination. Their task was to adjust the probe such that it would appear as a white sphere in the scene. When the probe was located in the foreground, observers who reported the dress to be white (white perceivers) tended to produce bluer adjustments than observers who reported it as blue (blue perceivers). Blue perceivers tended to perceive the illumination as less chromatic. There were no differences in chromaticity settings between perceiver types for the probe placed in the background. Perceiver types also did not differ in their illumination intensity and direction estimates across probe locations. These results provide direct support for the idea that the ambiguity in the perceived color of the dress can be explained by the different assumptions that people have about the illumination chromaticity in the foreground of the scene. In a second experiment we explore the possibility that blue perceivers might overall be less sensitive to contextual cues, and measure white and blue perceivers´ dress color matches and labels for manipulated versions of the original photo. Results indeed confirm that contextual cues predominantly affect white perceivers

    Many-body localization in Landau level subbands

    Full text link
    We explore the problem of localization in topological and non-topological nearly-flat subbands derived from the lowest Landau level, in the presence of quenched disorder and short-range interactions. We consider two models: a suitably engineered periodic potential, and randomly distributed point-like impurities. We perform numerical exact diagonalization on a torus geometry and use the mean level spacing ratio ⟨r⟩\langle r \rangle as a diagnostic of ergodicity. For topological subbands, we find there is no ergodicity breaking in both the one and two dimensional thermodynamic limits. For non-topological subbands, in constrast, we find evidence of an ergodicity breaking transition at finite disorder strength in the one-dimensional thermodynamic limit. Intriguingly, indications of similar behavior in the two-dimensional thermodynamic limit are found, as well. This constitutes a novel, continuum\textit{continuum} setting for the study of the many-body localization transition in one and two dimensions

    The nature of the tensor order in Cd2Re2O7

    Full text link
    The pyrochlore metal Cd2Re2O7 has been recently investigated by second-harmonic generation (SHG) reflectivity. In this paper, we develop a general formalism that allows for the identification of the relevant tensor components of the SHG from azimuthal scans. We demonstrate that the secondary order parameter identified by SHG at the structural phase transition is the x2-y2 component of the axial toroidal quadrupole. This differs from the 3z2-r2 symmetry of the atomic displacements associated with the I-4m2 crystal structure that was previously thought to be its origin. Within the same formalism, we suggest that the primary order parameter detected in the SHG experiment is the 3z2-r2 component of the magnetic quadrupole. We discuss the general mechanism driving the phase transition in our proposed framework, and suggest experiments, particularly resonant X-ray scattering ones, that could clarify this issue.Comment: some additions and clarifications adde
    • …
    corecore