27,691 research outputs found
Role of shocked accretion flows in regulating the QPO of galactic black hole candidates
Using a generalized non-spherical, multi-transonic accretion flow model, we
analytically calculate the normalized QPO frequency
of galactic black hole candidates in terms of dynamical flow variables and
self-consistently study the dependence of on such
variables. Our results are in fairly close agreement with the observed QPO
frequencies of GRS 1915+105. We find that is quite
sensitive to various parameters describing the black hole accretion flow
containing dissipative and non-dissipative shock waves. Thus the QPO phenomena
is, {\it indeed}, regulated by `shocked' black hole accretion, and, for the
first time, we establish a definitive connection between the QPO frequency and
the properties of advective BH accretion flows. This information may provide
the explanation of some important observations of galactic micro quasars.Comment: Final version accepted for publication in the Astrophysical Journal
Letters (ApJL). A considerable part of the paper is almost completely
re-written, though the results and the final conclussions are the same. One
can now ignore the previous version. 8 pages with four black and white
figures. For high resolution Fig. 3, please mail the author
<[email protected]
Gravitational-Wave Radiation from Magnetized Accretion Disks
The detectability of gravitational wave (GW) radiation from accretion disks
is discussed based on various astrophysical contexts. In order to emit GW
radiation, the disk shape should lose axial symmetry. We point out that a
significant deformation is plausible in non-radiative hot accretion disks
because of enhanced magnetic activity, whereas it is unlikely for standard-type
cool disks. We have analyzed the 3D magnetohydrodynamical (MHD) simulation data
of magnetized accretion flow, finding non-axisymmetric density patterns. The
corresponding ellipticity is . The expected time variations
of GW radiation are overall chaotic, but there is a hint of quasi-periodicity.
GW radiation has no interesting consequence, however, in the case of close
binaries, because of very tiny disk masses. GW radiation is not significant,
either, for AGN because of very slow rotation velocities. The most promising
case can be found in gamma-ray bursts or supernovae, in which a massive torus
(or disk) with a solar mass or so may be formed around a stellar-mass compact
object as the result of a merger of compact objects, or by the fallback of
exploded material towards the center in a supernova. Although much more intense
GW radiation is expected before the formation of the torus, the detection of GW
radiation in the subsequent accretion phase is of great importance, since it
will provide a good probe to investigating their central engines.Comment: To appear in PASJ, 15 pages, 2 figure
Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity
Using an isothermal MHD code, we have performed three-dimensional,
high-resolution simulations of the Parker instability. The initial equilibrium
system is composed of exponentially-decreasing isothermal gas and magnetic
field (along the azimuthal direction) under a uniform gravity. The evolution of
the instability can be divided into three phases: linear, nonlinear, and
relaxed. During the linear phase, the perturbations grow exponentially with a
preferred scale along the azimuthal direction but with smallest possible scale
along the radial direction, as predicted from linear analyses. During the
nonlinear phase, the growth of the instability is saturated and flow motion
becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field
lines. This, in turn, results in the redistribution of gas and magnetic field.
The system approaches a new equilibrium in the relaxed phase, which is
different from the one seen in two-dimensional works. The structures formed
during the evolution are sheet-like or filamentary, whose shortest dimension is
radial. Their maximum density enhancement factor relative to the initial value
is less than 2. Since the radial dimension is too small and the density
enhancement is too low, it is difficult to regard the Parker instability alone
as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to
appear in The Astrophysical Journal Letters, original quality figures
available via anonymous ftp at
ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or
ftp://canopus.chungnam.ac.kr/ryu/parker3d.u
New Kinetic Equation for Pair-annihilating Particles: Generalization of the Boltzmann Equation
A convenient form of kinetic equation is derived for pair annihilation of
heavy stable particles relevant to the dark matter problem in cosmology. The
kinetic equation thus derived extends the on-shell Boltzmann equation in a most
straightforward way, including the off-shell effect. A detailed balance
equation for the equilibrium abundance is further analyzed. Perturbative
analysis of this equation supports a previous result for the equilibrium
abundance using the thermal field theory, and gives the temperature power
dependence of equilibrium value at low temperatures. Estimate of the relic
abundance is possible using this new equilibrium abundance in the sudden
freeze-out approximation.Comment: 19 pages, LATEX file with 2 PS figure
Universal entanglement concentration
We propose a new protocol of \textit{universal} entanglement concentration,
which converts many copies of an \textit{unknown} pure state to an \textit{%
exact} maximally entangled state. The yield of the protocol, which is outputted
as a classical information, is probabilistic, and achives the entropy rate with
high probability, just as non-universal entanglement concentration protocols
do.
Our protocol is optimal among all similar protocols in terms of wide
varieties of measures either up to higher orders or non-asymptotically,
depending on the choice of the measure. The key of the proof of optimality is
the following fact, which is a consequence of the symmetry-based construction
of the protocol: For any invariant measures, optimal protocols are found out in
modifications of the protocol only in its classical output, or the claim on the
product.
We also observe that the classical part of the output of the protocol gives a
natural estimate of the entropy of entanglement, and prove that that estimate
achieves the better asymptotic performance than any other (potentially global)
measurements.Comment: Revised a lot, especially proofs, though no change in theorems,
lemmas itself. Very long, but essential part is from Sec.I to Sec IV-C. Some
of the appendces are almost independent of the main bod
Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow
Rapid fluctuation with a frequency dependence of (with ) is characteristic of radiation from black-hole objects. Its
origin remains poorly understood. We examine the three-dimensional
magnetohydrodynamical (MHD) simulation data, finding that a magnetized
accretion disk exhibits both fluctuation (with )
and a fractal magnetic structure (with the fractal dimension of ).
The fractal field configuration leads reconnection events with a variety of
released energy and of duration, thereby producing fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52
No.1 (Feb 2000
A Multi-dimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics
We present a multi-dimensional numerical code to solve isothermal
magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows.
First, we have built a one-dimensional code which is based on an explicit
finite-difference method on an Eulerian grid, called the total variation
diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code,
including the normalized right and left eigenvectors of the IMHD Jacobian
matrix, are presented. Then, we have extended the one-dimensional code to a
multi-dimensional IMHD code through a Strang-type dimensional splitting. In the
multi-dimensional code, an explicit cleaning step has been included to
eliminate non-zero at every time step. To estimate the
proformance of the code, one- and two-dimensional IMHD shock tube tests, and
the decay test of a two-dimensional Alfv\'{e}n wave have been done. As an
example of astrophysical applications, we have simulated the nonlinear
evolution of the two-dimensional Parker instability under a uniform gravity.Comment: Accepted for publication in ApJ, using aaspp4.sty, 22 text pages with
10 figure
A Family of Controllable Cellular Automata for Pseudorandom Number Generation
In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups show that the randomness of the evolved groups is further improved compared with any individual CCA PRNG
N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature
We investigate the large N reduced model of gauge theory on a curved
spacetime through the plane wave matrix model. We formally derive the action of
the N=4 supersymmetric Yang-Mills theory on R \times S^3 from the plane wave
matrix model in the large N limit. Furthermore, we evaluate the effective
action of the plane wave matrix model up to the two-loop level at finite
temperature. We find that the effective action is consistent with the free
energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature
limit where the planar contributions dominate. We conclude that the plane wave
matrix model can be used as a large N reduced model to investigate
nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \times
S^3.Comment: 31pages: added comments and reference
- …
