27,691 research outputs found

    Role of shocked accretion flows in regulating the QPO of galactic black hole candidates

    Get PDF
    Using a generalized non-spherical, multi-transonic accretion flow model, we analytically calculate the normalized QPO frequency νˉqpo{\bar {\bf {\nu}}}_{qpo} of galactic black hole candidates in terms of dynamical flow variables and self-consistently study the dependence of νˉqpo{\bar {\bf {\nu}}}_{qpo} on such variables. Our results are in fairly close agreement with the observed QPO frequencies of GRS 1915+105. We find that νˉqpo{\bar {\bf {\nu}}}_{qpo} is quite sensitive to various parameters describing the black hole accretion flow containing dissipative and non-dissipative shock waves. Thus the QPO phenomena is, {\it indeed}, regulated by `shocked' black hole accretion, and, for the first time, we establish a definitive connection between the QPO frequency and the properties of advective BH accretion flows. This information may provide the explanation of some important observations of galactic micro quasars.Comment: Final version accepted for publication in the Astrophysical Journal Letters (ApJL). A considerable part of the paper is almost completely re-written, though the results and the final conclussions are the same. One can now ignore the previous version. 8 pages with four black and white figures. For high resolution Fig. 3, please mail the author <[email protected]

    Gravitational-Wave Radiation from Magnetized Accretion Disks

    Get PDF
    The detectability of gravitational wave (GW) radiation from accretion disks is discussed based on various astrophysical contexts. In order to emit GW radiation, the disk shape should lose axial symmetry. We point out that a significant deformation is plausible in non-radiative hot accretion disks because of enhanced magnetic activity, whereas it is unlikely for standard-type cool disks. We have analyzed the 3D magnetohydrodynamical (MHD) simulation data of magnetized accretion flow, finding non-axisymmetric density patterns. The corresponding ellipticity is ϵ0.01\epsilon \sim 0.01. The expected time variations of GW radiation are overall chaotic, but there is a hint of quasi-periodicity. GW radiation has no interesting consequence, however, in the case of close binaries, because of very tiny disk masses. GW radiation is not significant, either, for AGN because of very slow rotation velocities. The most promising case can be found in gamma-ray bursts or supernovae, in which a massive torus (or disk) with a solar mass or so may be formed around a stellar-mass compact object as the result of a merger of compact objects, or by the fallback of exploded material towards the center in a supernova. Although much more intense GW radiation is expected before the formation of the torus, the detection of GW radiation in the subsequent accretion phase is of great importance, since it will provide a good probe to investigating their central engines.Comment: To appear in PASJ, 15 pages, 2 figure

    Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

    Get PDF
    Using an isothermal MHD code, we have performed three-dimensional, high-resolution simulations of the Parker instability. The initial equilibrium system is composed of exponentially-decreasing isothermal gas and magnetic field (along the azimuthal direction) under a uniform gravity. The evolution of the instability can be divided into three phases: linear, nonlinear, and relaxed. During the linear phase, the perturbations grow exponentially with a preferred scale along the azimuthal direction but with smallest possible scale along the radial direction, as predicted from linear analyses. During the nonlinear phase, the growth of the instability is saturated and flow motion becomes chaotic. Magnetic reconnection occurs, which allows gas to cross field lines. This, in turn, results in the redistribution of gas and magnetic field. The system approaches a new equilibrium in the relaxed phase, which is different from the one seen in two-dimensional works. The structures formed during the evolution are sheet-like or filamentary, whose shortest dimension is radial. Their maximum density enhancement factor relative to the initial value is less than 2. Since the radial dimension is too small and the density enhancement is too low, it is difficult to regard the Parker instability alone as a viable mechanism for the formation of giant molecular clouds.Comment: 8 pages of text, 4 figures (figure 2 in degraded gif format), to appear in The Astrophysical Journal Letters, original quality figures available via anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/parker3d.uu or ftp://canopus.chungnam.ac.kr/ryu/parker3d.u

    New Kinetic Equation for Pair-annihilating Particles: Generalization of the Boltzmann Equation

    Get PDF
    A convenient form of kinetic equation is derived for pair annihilation of heavy stable particles relevant to the dark matter problem in cosmology. The kinetic equation thus derived extends the on-shell Boltzmann equation in a most straightforward way, including the off-shell effect. A detailed balance equation for the equilibrium abundance is further analyzed. Perturbative analysis of this equation supports a previous result for the equilibrium abundance using the thermal field theory, and gives the temperature power dependence of equilibrium value at low temperatures. Estimate of the relic abundance is possible using this new equilibrium abundance in the sudden freeze-out approximation.Comment: 19 pages, LATEX file with 2 PS figure

    Universal entanglement concentration

    Full text link
    We propose a new protocol of \textit{universal} entanglement concentration, which converts many copies of an \textit{unknown} pure state to an \textit{% exact} maximally entangled state. The yield of the protocol, which is outputted as a classical information, is probabilistic, and achives the entropy rate with high probability, just as non-universal entanglement concentration protocols do. Our protocol is optimal among all similar protocols in terms of wide varieties of measures either up to higher orders or non-asymptotically, depending on the choice of the measure. The key of the proof of optimality is the following fact, which is a consequence of the symmetry-based construction of the protocol: For any invariant measures, optimal protocols are found out in modifications of the protocol only in its classical output, or the claim on the product. We also observe that the classical part of the output of the protocol gives a natural estimate of the entropy of entanglement, and prove that that estimate achieves the better asymptotic performance than any other (potentially global) measurements.Comment: Revised a lot, especially proofs, though no change in theorems, lemmas itself. Very long, but essential part is from Sec.I to Sec IV-C. Some of the appendces are almost independent of the main bod

    Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow

    Full text link
    Rapid fluctuation with a frequency dependence of 1/fα1/f^{\alpha} (with α12\alpha \simeq 1 - 2) is characteristic of radiation from black-hole objects. Its origin remains poorly understood. We examine the three-dimensional magnetohydrodynamical (MHD) simulation data, finding that a magnetized accretion disk exhibits both 1/fα1/f^\alpha fluctuation (with α2\alpha \simeq 2) and a fractal magnetic structure (with the fractal dimension of D1.9D \sim 1.9). The fractal field configuration leads reconnection events with a variety of released energy and of duration, thereby producing 1/fα1/f^\alpha fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52 No.1 (Feb 2000

    A Multi-dimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics

    Get PDF
    We present a multi-dimensional numerical code to solve isothermal magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows. First, we have built a one-dimensional code which is based on an explicit finite-difference method on an Eulerian grid, called the total variation diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code, including the normalized right and left eigenvectors of the IMHD Jacobian matrix, are presented. Then, we have extended the one-dimensional code to a multi-dimensional IMHD code through a Strang-type dimensional splitting. In the multi-dimensional code, an explicit cleaning step has been included to eliminate non-zero B\nabla\cdot B at every time step. To estimate the proformance of the code, one- and two-dimensional IMHD shock tube tests, and the decay test of a two-dimensional Alfv\'{e}n wave have been done. As an example of astrophysical applications, we have simulated the nonlinear evolution of the two-dimensional Parker instability under a uniform gravity.Comment: Accepted for publication in ApJ, using aaspp4.sty, 22 text pages with 10 figure

    A Family of Controllable Cellular Automata for Pseudorandom Number Generation

    Get PDF
    In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups show that the randomness of the evolved groups is further improved compared with any individual CCA PRNG

    N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature

    Full text link
    We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \times S^3.Comment: 31pages: added comments and reference
    corecore