13,921 research outputs found

    Spaceborne Passive Radiative Cooler

    Get PDF
    Radiative coolers are passive refrigeration devices for satellites and space probes that provide refrigeration for an infrared or other type of detector that operates at cryogenic temperatures. Typically a cooler can supply 20 mW of cooling at about 85 K, and over 500 mW of cooling at about 165 K. The exact cooler temperatures and heat loads are dependent upon the clear field of view of the cooler to space. Some features of the Arthur D. Little passive radiative cooler are given

    Non-adiabatic processes in Majorana qubit systems

    Full text link
    We investigate the non-adiabatic processes occurring during the manipulations of Majorana qubits in 1-D semiconducting wires with proximity induced superconductivity. Majorana qubits are usually protected by the excitation gap. Yet, manipulations performed at a finite pace can introduce both decoherence and renormalization effects. Though exponentially small for slow manipulations, these effects are important as they may constitute the ultimate decoherence mechanism. Moreover, as adiabatic topological manipulations fail to produce a universal set of quantum gates, non-adiabatic manipulations might be necessary to perform quantum computation.Comment: 14 pages, 5 figure

    Protection of parity-time symmetry in topological many-body systems: non-Hermitian toric code and fracton models

    Full text link
    In the study of PT\mathcal{P}\mathcal{T}-symmetric quantum systems with non-Hermitian perturbations, one of the most important questions is whether eigenvalues stay real or whether PT\mathcal{P}\mathcal{T}-symmetry is spontaneously broken when eigenvalues meet. A particularly interesting set of eigenstates is provided by the degenerate ground-state subspace of systems with topological order. In this paper, we present simple criteria that guarantee the protection of PT\mathcal{P}\mathcal{T}-symmetry and, thus, the reality of the eigenvalues in topological many-body systems. We formulate these criteria in both geometric and algebraic form, and demonstrate them using the toric code and several different fracton models as examples. Our analysis reveals that PT\mathcal{P}\mathcal{T}-symmetry is robust against a remarkably large class of non-Hermitian perturbations in these models; this is particularly striking in the case of fracton models due to the exponentially large number of degenerate states.Comment: 20 pages, 6 figure

    Quantum Corrections in Quintessence Models

    Get PDF
    We investigate the impact of quantum fluctuations on a light rolling quintessence field from three different sources, namely, from a coupling to the standard model and dark matter, from its self-couplings and from its coupling to gravity. We derive bounds for time-varying masses from the change of vacuum energy, finding \Delta m_e/m_e << 10^{-11} for the electron and \Delta m_p/m_p << 10^{-15} for the proton since redshift z~2, whereas the neutrino masses could change of order one. Mass-varying dark matter is also constrained. Next, the self-interactions are investigated. For inverse power law potentials, the effective potential does not become infinitely large at small field values, but saturates at a finite maximal value. We discuss implications for cosmology. Finally, we show that one-loop corrections induce non-minimal gravitational couplings involving arbitrarily high powers of the curvature scalar R, indicating that quintessence entails modified gravity effects.Comment: 10 pages + appendix, added reference

    Study of component technologies for fuel cell on-site integrated energy system. Volume 2: Appendices

    Get PDF
    This data base catalogue was compiled in order to facilitate the analysis of various on site integrated energy system with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables. The integrated fuel cell systems diagrams and the computer analysis of systems are included as well as the cash flows series for baseline systems

    Planckian Interacting Massive Particles as Dark Matter

    Get PDF
    The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than 0.01 Mp0.01\,\textrm{M}_p is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.Comment: 6 pages, 1 figure, Version published in PR
    • …
    corecore