18 research outputs found

    Enforcing Behavioral Profiles through Software-Defined Networks in the Industrial Internet of Things

    Get PDF
    The fourth industrial revolution is being mainly driven by the integration of Internet of Things (IoT) technologies to support the development lifecycle of systems and products. Despite the well-known advantages for the industry, an increasingly pervasive industrial ecosystem could make such devices an attractive target for potential attackers. Recently, the Manufacturer Usage Description (MUD) standard enables manufacturers to specify the intended use of their devices, thereby restricting the attack surface of a certain system. In this direction, we propose a mechanism to manage securely the obtaining and enforcement of MUD policies through the use of a Software-Defined Network (SDN) architecture. We analyze the applicability and advantages of the use of MUD in industrial environments based on our proposed solution, and provide an exhaustive performance evaluation of the required processes

    High SOX9 Maintains Glioma Stem Cell Activity through a Regulatory Loop Involving STAT3 and PML

    Get PDF
    Glioma stem cells (GSCs) are critical targets for glioma therapy. SOX9 is a transcription factor with critical roles during neurodevelopment, particularly within neural stem cells. Previous studies showed that high levels of SOX9 are associated with poor glioma patient survival. SOX9 knockdown impairs GSCs proliferation, confirming its potential as a target for glioma therapy. In this study, we characterized the function of SOX9 directly in patient-derived glioma stem cells. Notably, transcriptome analysis of GSCs with SOX9 knockdown revealed STAT3 and PML as downstream targets. Functional studies demonstrated that SOX9, STAT3, and PML form a regulatory loop that is key for GSC activity and self-renewal. Analysis of glioma clinical biopsies confirmed a positive correlation between SOX9/STAT3/PML and poor patient survival among the cases with the highest SOX9 expression levels. Importantly, direct STAT3 or PML inhibitors reduced the expression of SOX9, STAT3, and PML proteins, which significantly reduced GSCs tumorigenicity. In summary, our study reveals a novel role for SOX9 upstream of STAT3, as a GSC pathway regulator, and presents pharmacological inhibitors of the signaling cascade.P.A. and A.S.-A. were recipients of predoctoral fellowships from the AECC foundation and Carlos III Institute (ISCIII), respectively. M.a.-S. holds a Sara Borrell postdoctoral contract from the ISCIII (CD19/00154). E.C.-G. was a recipient of a Stop Fuga de Cerebros postdoctoral fellowship and holds a Miguel Servet contract from the ISCIII (CP19/00085). We thank the Histology Platform of the Biodonostia Health Research Institute, The Neuro-Oncology Committee of Donostia University Hospital, and Basque Biobank for their help. This research was supported by grants from ISCIII and FEDER Funds (CP16/00039, DTS16/00184, PI16/01580, DTS18/00181, PI18/01612, CP19/00085), and the Industry and Health Departments of the Basque Country

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Type III Secretion-Dependent and -Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots

    Get PDF
    The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available. The early steps of infection, essential for colonization, as well as the early plant defense responses remain mostly unknown. Here, we have set up a simple, in vitro Arabidopsis thaliana-R. solanacearum pathosystem that has allowed us to identify three clear root phenotypes specifically associated to the early stages of infection: root-growth inhibition, root-hair formation, and root-tip cell death. Using this method, we have been able to differentiate, on Arabidopsis plants, the phenotypes caused by mutants in the key bacterial virulence regulators hrpB and hrpG, which remained indistinguishable using the classical soil-drench inoculation pathogenicity assays. In addition, we have revealed the previously unknown involvement of auxins in the root rearrangements caused by R. solanacearum infection. Our system provides an easy-to-use, high-throughput tool to study R. solanacearum aggressiveness. Furthermore, the observed phenotypes may allow the identification of bacterial virulence determinants and could even be used to screen for novel forms of early plant resistance to bacterial wilt

    Enforcing Behavioral Profiles through Software-Defined Networks in the Industrial Internet of Things

    Get PDF
    The fourth industrial revolution is being mainly driven by the integration of Internet of Things (IoT) technologies to support the development lifecycle of systems and products. Despite the well-known advantages for the industry, an increasingly pervasive industrial ecosystem could make such devices an attractive target for potential attackers. Recently, the Manufacturer Usage Description (MUD) standard enables manufacturers to specify the intended use of their devices, thereby restricting the attack surface of a certain system. In this direction, we propose a mechanism to manage securely the obtaining and enforcement of MUD policies through the use of a Software-Defined Network (SDN) architecture. We analyze the applicability and advantages of the use of MUD in industrial environments based on our proposed solution, and provide an exhaustive performance evaluation of the required processes

    Type III Secretion-Dependent and -Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots

    No full text
    The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available. The early steps of infection, essential for colonization, as well as the early plant defense responses remain mostly unknown. Here, we have set up a simple, in vitro Arabidopsis thaliana-R. solanacearum pathosystem that has allowed us to identify three clear root phenotypes specifically associated to the early stages of infection: root-growth inhibition, root-hair formation, and root-tip cell death. Using this method, we have been able to differentiate, on Arabidopsis plants, the phenotypes caused by mutants in the key bacterial virulence regulators hrpB and hrpG, which remained indistinguishable using the classical soil-drench inoculation pathogenicity assays. In addition, we have revealed the previously unknown involvement of auxins in the root rearrangements caused by R. solanacearum infection. Our system provides an easy-to-use, high-throughput tool to study R. solanacearum aggressiveness. Furthermore, the observed phenotypes may allow the identification of bacterial virulence determinants and could even be used to screen for novel forms of early plant resistance to bacterial wilt

    Security Architecture for defining and enforcing security profiles in DLT/SDN-based IoT systems

    No full text
    Despite the advantages that the Internet of Things (IoT) will bring to our daily life, the increasing interconnectivity, as well as the amount and sensitivity of data make IoT devices an attractive target for attackers. To address this issue, the recent Manufacturer Usage Description (MUD) standard has been proposed to describe network access control policies in the manufacturing phase to protect the device during its operation by restricting its communications. In this paper, we define an architecture and process to obtain and enforce the MUD restrictions during the bootstrapping of a device. Furthermore, we extend the MUD model with a flexible policy language to express additional aspects, such as data privacy, channel protection and resource authorization. For the enforcement of such enriched behavioral profiles, we make use of Software Defined Networking (SDN) techniques, as well as an attribute-based access control approach by using authorization credentials and encryption techniques. These techniques are used to protect devices’ data, which are shared through a blockchain platform. The resulting approach has been implemented and evaluated in a real scenario, and is intended to reduce the attack surface of IoT deployments by restricting devices’ communication before they join a certain network.JRC.E.3-Cyber and Digital Citizens' Securit

    Centenarians overexpress pluripotency-related genes

    No full text
    Human mesenchymal cells can become pluripotent by the addition of Yamanaka factors OCT3/4, SOX2, c-MYC, KLF4. We have recently reported that centenarians overexpress BCL-xL, which has been shown to improve pluripotency; thus, we aimed to determine the expression of pluripotency-related genes in centenarians. We recruited 22 young, 32 octogenarian, and 47 centenarian individuals and determined the mRNA expression of Yamanaka factors and other stemness-related cell surface marker genes (VIM, BMP4, NCAM, BMPR2) in peripheral blood mononuclear cells by reverse transcription polymerase chain reaction. We found that centenarians overexpress OCT3/4, SOX2, c-MYC, VIM, BMP4, NCAM, and BMPR2, when compared with octogenarians (p < .05). We further tested the functional role of BCL-xL in centenarians' ability to express pluripotency-related genes: lymphocytes from octogenarians transduced with BCL-xL overexpressed SOX2, c-MYC, and KLF4. We conclude that centenarians overexpress Yamanaka Factors and other stemness-related cell surface marker genes, which may contribute to their successful aging

    Surgical site infection after gastrointestinal surgery in children : an international, multicentre, prospective cohort study