3 research outputs found
Mixing and phase separation at supercritical and transcritical pressures
We have developed a thermodynamically consistent and tuning-parameter-free two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vaporliquid equilibrium calculations. It can represent the coexistence of supercritical states and multi-component subcritical two-phase states via a homogeneous mixture approach without any semiempirical break-up and evaporation models. Computational results for liquid-fuel injection at transcritical operating conditions are found to agree very well with available experimental data for the ECN Spray A.Aerodynamic
Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A
We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and multi-component subcritical two-phase states via a homogeneous mixture approach. Well-resolved LES results for the Spray A benchmark case of the Engine Combustion Network (ECN) and three additional operating conditions are found to agree very well with available experimental data. We also address well-known numerical challenges of trans- and supercritical fluid mixing and compare a fully conservative formulation to a quasi-conservative formulation of the governing equations. Our results prove physical and numerical consistency of both methods on fine grids and demonstrate the effects of energy conservation errors associated with the quasi-conservative formulation on typical LES grids.Aerodynamic
GPU-accelerated simulations for eVTOL aerodynamic analysis
The demand for fast, high-fidelity, scale-resolving computational fluid dynamics (CFD) simulations is continuously growing. Especially new emerging aviation technologies, such as electrical vertical take-off and landing aircraft (eVTOL), strongly rely on advanced numerical methods to retain development life-cycle costs and achieving design targets more quickly. This paper presents a cutting-edge large-eddy simulations (LES) solver developed to enable over-night turnaround times for full aircraft simulations on advanced graphics processing unit (GPU) architectures. The solver models weakly compressible fluid flows over complex three-dimensional bodies based on an immersed boundary method with geometry-based and flow-based automatic mesh adaption. Its high accuracy and unprecedented performance is demonstrated for high Reynolds number aerodynamic benchmark cases and compared to recent results from literature. In addition, the successful validation against experimental data for the Lilium Jet canard is discussed.Aerodynamic