1 research outputs found
Electrochemical Performance of Nanosized Disordered LiVOPO<sub>4</sub>
ε-LiVOPO<sub>4</sub> is a promising multielectron cathode
material for Li-ion batteries that can accommodate two electrons per
vanadium, leading to higher energy densities. However, poor electronic
conductivity and low lithium ion diffusivity currently result in low
rate capability and poor cycle life. To enhance the electrochemical
performance of ε-LiVOPO<sub>4</sub>, in this work, we optimized
its solid-state synthesis route using in situ synchrotron X-ray diffraction
and applied a combination of high-energy ball-milling with electronically
and ionically conductive coatings aiming to improve bulk and surface
Li diffusion. We show that high-energy ball-milling, while reducing
the particle size also introduces structural disorder, as evidenced
by <sup>7</sup>Li and <sup>31</sup>P NMR and X-ray absorption spectroscopy.
We also show that a combination of electronically and ionically conductive
coatings helps to utilize close to theoretical capacity for ε-LiVOPO<sub>4</sub> at C/50 (1 C = 153 mA h g<sup>–1</sup>) and to enhance
rate performance and capacity retention. The optimized ε-LiVOPO<sub>4</sub>/Li<sub>3</sub>VO<sub>4</sub>/acetylene black composite yields
the high cycling capacity of 250 mA h g<sup>–1</sup> at C/5
for over 70 cycles