489 research outputs found

    Low-dose coronary calcium scoring CT using a dedicated reconstruction filter for kV-independent calcium measurements

    Get PDF
    In this prospective, pilot study, we tested a kV-independent coronary artery calcium scoring CT protocol, using a novel reconstruction kernel (Sa36f). From December 2018 to November 2019, we performed an additional research scan in 61 patients undergoing clinical calcium scanning. For the standard protocol (120 kVp), images were reconstructed with a standard, medium-sharp kernel (Qr36d). For the research protocol (automated kVp selection), images were reconstructed with a novel kernel (Sa36f). Research scans were sequentially performed using a higher (cohort A, n = 31) and a lower (cohort B, n = 30) dose optimizer setting within the automatic system with customizable kV selection. Agatston scores, coronary calcium volumes, and radiation exposure of the standard and research protocol were compared. A phantom study was conducted to determine inter-scan variability. There was excellent correlation for the Agatston score between the two protocols (r = 0.99); however, the standard protocol resulted in slightly higher Agatston scores (29.4 [0-139.0] vs 17.4 [0-158.2], p = 0.028). The median calcium volumes were similar (11.5 [0-109.2] vs 11.2 [0-118.0] mm(3); p = 0.176), and the number of calcified lesions was not significantly different (p = 0.092). One patient was reclassified to another risk category. The research protocol could be performed at a lower kV and resulted in a substantially lower radiation exposure, with a median volumetric CT dose index of 4.1 vs 5.2 mGy, respectively (p < 0.001). Our results showed that a consistent coronary calcium scoring can be achieved using a kV-independent protocol that lowers radiation doses compared to the standard protocol

    Conspicuity and muscle-invasiveness assessment for bladder cancer using VI-RADS: a multi-reader, contrast-free MRI study to determine optimal b-values for diffusion-weighted imaging

    Get PDF
    To (1) compare bladder cancer (BC) muscle invasiveness among three b-values using a contrast-free approach based on Vesical Imaging-Reporting and Data System (VI-RADS), to (2) determine if muscle-invasiveness assessment is affected by the reader experience, and to (3) compare BC conspicuity among three b-values, qualitatively and quantitatively

    Optimization of window settings for coronary arteries assessment using spectral CT-derived virtual monoenergetic imaging

    Get PDF
    Purpose: To determine the optimal window setting for virtual monoenergetic images (VMI) reconstructed from dual-layer spectral coronary computed tomography angiography (DE-CCTA) datasets. Material and methods: 50 patients (30 males; mean age 61.1 ± 12.4 years who underwent DE-CCTA from May 2021 to June 2022 for suspected coronary artery disease, were retrospectively included. Image quality assessment was performed on conventional images and VMI reconstructions at 70 and 40 keV. Objective image quality was assessed using contrast-to-noise ratio (CNR). Two independent observers manually identified the best window settings (B-W/L) for VMI 70 and VMI 40 visualization. B-W/L were then normalized with aortic attenuation using linear regression analysis to obtain the optimized W/L (O-W/L) settings. Additionally, subjective image quality was evaluated using a 5-point Likert scale, and vessel diameters were measured to examine any potential impact of different W/L settings. Results: VMI 40 demonstrated higher CNR values compared to conventional and VMI 70. B-W/L settings identified were 1180/280 HU for VMI 70 and 3290/900 HU for VMI 40. Subsequent linear regression analysis yielded O-W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40. VMI 40 O-W/L received the highest scores for each parameter compared to conventional (all p &lt; 0.0027). Using O-W/L settings for VMI 70 and VMI 40 did not result in significant differences in vessel measurements compared to conventional images. Conclusion: Optimization of VMI requires adjustments in W/L settings. Our results recommend W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40.</p

    Follow-up of multi-messenger alerts with the KM3NeT ARCA and ORCA detectors

    Get PDF
    The strength of multi-messenger astronomy comes from its capability to increase the significance of a detection through the combined observation of events coincident in space and time. This is particularly valuable for transient events, since the use of a narrow time window can allow a reduction of background of the search. In KM3NeT, we are actively monitoring and analysing a variety of external triggers in real-time, including alerts like IceCube neutrinos, HAWC gamma-ray transients, LIGO-Virgo- KAGRA gravitational waves, SNEWS neutrino alerts, and others. In this contribution, we present the follow-up of various external alerts using the comple- mentary capabilities of the two KM3NeT detectors, ORCA (covering the few GeV to few TeV energy range) and ARCA (ranging from sub-TeV energies up to tens of PeV). Both detectors were collecting high-quality data with partial configurations during the period of the studied alerts, which goes from December 2021 until June 2023

    Inter-observer Variability of Expert-derived Morphologic Risk Predictors in Aortic Dissection

    Get PDF
    OBJECTIVES: Establishing the reproducibility of expert-derived measurements on CTA exams of aortic dissection is clinically important and paramount for ground-truth determination for machine learning. METHODS: Four independent observers retrospectively evaluated CTA exams of 72 patients with uncomplicated Stanford type B aortic dissection and assessed the reproducibility of a recently proposed combination of four morphologic risk predictors (maximum aortic diameter, false lumen circumferential angle, false lumen outflow, and intercostal arteries). For the first inter-observer variability assessment, 47 CTA scans from one aortic center were evaluated by expert-observer 1 in an unconstrained clinical assessment without a standardized workflow and compared to a composite of three expert-observers (observers 2-4) using a standardized workflow. A second inter-observer variability assessment on 30 out of the 47 CTA scans compared observers 3 and 4 with a constrained, standardized workflow. A third inter-observer variability assessment was done after specialized training and tested between observers 3 and 4 in an external population of 25 CTA scans. Inter-observer agreement was assessed with intraclass correlation coefficients (ICCs) and Bland-Altman plots. RESULTS: Pre-training ICCs of the four morphologic features ranged from 0.04 (-0.05 to 0.13) to 0.68 (0.49-0.81) between observer 1 and observers 2-4 and from 0.50 (0.32-0.69) to 0.89 (0.78-0.95) between observers 3 and 4. ICCs improved after training ranging from 0.69 (0.52-0.87) to 0.97 (0.94-0.99), and Bland-Altman analysis showed decreased bias and limits of agreement. CONCLUSIONS: Manual morphologic feature measurements on CTA images can be optimized resulting in improved inter-observer reliability. This is essential for robust ground-truth determination for machine learning models. KEY POINTS: • Clinical fashion manual measurements of aortic CTA imaging features showed poor inter-observer reproducibility. • A standardized workflow with standardized training resulted in substantial improvements with excellent inter-observer reproducibility. • Robust ground truth labels obtained manually with excellent inter-observer reproducibility are key to develop reliable machine learning models

    Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale

    Full text link
    PURPOSE To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD). MATERIALS AND METHODS The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique. RESULTS The primary end point is the occurrence of late adverse events, defined as aneurysm formation (≥6 cm), rapid expansion of the aorta (≥1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling. CONCLUSION This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVAR© RSNA, 2022See also the commentary by Rajiah in this issue

    No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients

    Get PDF
    Background: Outcomes of Ewing tumor (ET) patients treated with allogeneic stem cell transplantation (allo-SCT) were compared regarding the use of reduced-intensity conditioning (RIC) and high-intensity conditioning (HIC) regimens as well as human leukocyte antigen (HLA)-matched and HLA-mismatched grafts. Patients and methods: We retrospectively analyzed data of 87 ET patients from the European Group for Blood and Marrow Transplantation, Pediatric Registry for Stem Cell Transplantations, Asia Pacific Blood and Marrow Transplantation and MetaEICESS registries treated with allo-SCT. Fifty patients received RIC (group A) and 37 patients received HIC (group B). Twenty-four patients received HLA-mismatched grafts and 63 received HLA-matched grafts. Results: Median overall survival was 7.9 months [±1.24, 95% confidence interval (CI) 5.44-10.31] for group A and 4.4 months (±1.06, 95% CI 2.29-6.43) for group B patients (P = 1.3). Death of complications (DOC) occurred in 4 of 50 (0.08) and death of disease (DOD) in 33 of 50 (0.66) group A and in 16 of 37 (0.43) and 17 of 37 (0.46) group B patients, respectively. DOC incidence was decreased (P < 0.01) and DOD/relapse increased (P < 0.01) in group A compared with group B. HLA mismatch was not generally associated with graft-versus-Ewing tumor effect (GvETE). Conclusions: There was no improvement of survival with RIC compared with HIC due to increased DOD/relapse incidence after RIC despite less DOC incidence. This implicates general absence of a clinically relevant GvETE with current protocol

    Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    Given its operation time and wide field of view, the Fluorescence Detector (FD) of the Pierre Auger Observatory is sufficiently sensitive to detect upward-going events when used in monocular mode. Upward-going air showers are a possible interpretation of the recent events reported by the ANITA Collaboration in the energy range above 1017 eV. The Pierre Auger FD data can be used to support or constrain this interpretation. If confirmed, it would require either new phenomena or significant modifications to the standard model of particle physics. To prepare this search, a set of quality selection criteria was defined by using 10% of the available FD data from 14 years of operation. This subset was mainly used to clean the data from improperly labelled laser events that had been used to monitor the quality of the atmosphere. The potential background for this search consists of cosmic-ray induced air showers with specific geometric configurations which, in a monocular reconstruction, can be reconstructed erroneously as upward-going events. To distinguish candidates from these false positives, to calculate the exposure, and to estimate the expected background, dedicated simulations for signal (upward-going events) and background (downward-going events) have been performed. The detector exposure is large enough to strongly constrain the interpretation of ANITA anomalous events. Preliminary results of the analysis after unblinding the data set are presented

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking
    corecore