7,639 research outputs found

    Late movement of basin-edge lobate scarps on Mercury

    Get PDF
    Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size–frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north–south at low latitudes and ∼east–west at higher latitudes. However, reassessing these landforms’ orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated

    3D Extension at Plate Boundaries Accommodated by Interacting Fault Systems

    Get PDF
    Complex patterns of normal faults with multiple orientations and/or highly curved shapes have been traditionally explained by successive tectonic phases of 2-dimensional deformation. Alternatively, multiple fault sets have been proposed to develop simultaneously and in orthorhombic symmetry during a single phase of 3-dimensional deformation. We use analogue models of normal faults to demonstrate that, without the influence of pre-existing structures, 3D extension is preferentially accommodated by the alternate, rather than simultaneous, development of faults with different trends. By means of stress-driven interactions, 3D deformation can be partitioned into coupled systems of normal faults, which display geometries commonly observed in tectonic settings affected by interacting plate boundaries. Under radial extension, deformation is accommodated by major curvilinear grabens coupled with minor perpendicular faults, resulting in the triple junctions of grabens observed in Afar. On the other hand, the alternate development of perpendicular faults accommodates synchronous bi-directional and mutually perpendicular extension, giving the same fault pattern observed in the Barents Sea rift-shear margin

    3D extension at plate boundaries accommodated by interacting fault systems

    Get PDF
    Complex patterns of normal faults with multiple orientations and/or highly curved shapes have been traditionally explained by successive tectonic phases of 2-dimensional deformation. Alternatively, multiple fault sets have been proposed to develop simultaneously and in orthorhombic symmetry during a single phase of 3-dimensional deformation. We use analogue models of normal faults to demonstrate that, without the influence of pre-existing structures, 3D extension is preferentially accommodated by the alternate, rather than simultaneous, development of faults with different trends. By means of stress-driven interactions, 3D deformation can be partitioned into coupled systems of normal faults, which display geometries commonly observed in tectonic settings affected by interacting plate boundaries. Under radial extension, deformation is accommodated by major curvilinear grabens coupled with minor perpendicular faults, resulting in the triple junctions of grabens observed in Afar. On the other hand, the alternate development of perpendicular faults accommodates synchronous bi-directional and mutually perpendicular extension, giving the same fault pattern observed in the Barents Sea rift-shear margin

    A sensitivity study of triboson production processes to dimension-6 EFT operators at the LHC

    Get PDF
    We present the first parton-level study of anomalous effects in triboson production in both fully and semi-leptonic channels in proton-proton collisions at 13TeV at the Large Hadron Collider (LHC). The sensitivity to anomalies induced by a minimal set of bosonic dimension-6 operators from the Warsaw basis is evaluated with specific analyses for each final state. A likelihood-based strategy is employed to assess the most sensitive kinematic observables per channel, where the contribution of Effective Field Theory operators is parameterized at either the linear or quadratic level. The impact of the mutual interference terms of pairs of operators on the sensitivity is also examined. This benchmark study explores the complementarity and overlap in sensitivity between different triboson measurements and paves the way for future analyses at the LHC experiments. The statistical combination of the considered final states allows setting stringent bounds on five bosonic Wilson coefficients

    Recent Advances in the Development of Biomimetic Materials

    Get PDF
    : In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications. Fast-paced 3D printing and artificial intelligence, nevertheless, collide with reality: How difficult can it be to build reproducible biomimetic materials at a real scale in line with the complexity of living systems? Nowadays, science is in urgent need of bioengineering technologies for the practical use of bioinspired and biomimetics for medicine and clinics
    • …
    corecore