624 research outputs found
Regional Inflation Dynamics within and across Euro Area and a Comparison with the US
We investigate co-movements in inflation dynamics within and across euro area regions and find it important for monetary policy to monitor regional inflation dynamics to enhance the understanding of aggregate inflation. We employ a model where regional inflation dynamics are explained by common euro area and country specific factors and an idiosyncratic regional component. We find substantial common area wide component, that can be related to common euro area monetary policy, to exchange rate and oil prices changes. The effects of the area wide factors differ across regions, however. We also find a substantial national component. Our findings do not differ substantially before and after EMU. Analysing US regional inflation developments yields similar results regarding the relevance of common US factors.regional inflation dynamics, euro area and US, common factor models
Real time estimates of the euro area output gap: reliability and forecasting performance
This paper provides evidence on the reliability of euro area real-time output gap estimates. A genuine real-time data set for the euro area is used, including vintages of several sets of euro area output gap estimates available from 1999 to 2006. It turns out that real-time estimates of the output gap are characterised by a high degree of uncertainty, much higher than that resulting from model and estimation uncertainty only. In particular, the evidence indicates that both the magnitude and the sign of the real-time estimates of the euro area output gap are very uncertain. The uncertainty is mostly due to parameter instability, while data revisions seem to play a minor role. To benchmark our results, we repeat the analysis for the US over the same sample. It turns out that US real time estimates are much more correlated with final estimates than for the euro area, data revisions play a larger role, but overall the unreliability in real time of the US output gap measures detected in earlier studies is confirmed in the more recent period. Moreover, despite some difference across output gap estimates and forecast horizons, the results point clearly to a lack of any usefulness of real-time output gap estimates for inflation forecasting both in the short term (one-quarter and one-year ahead) and the medium term (two-year and three-year ahead). By contrast, some evidence is provided indicating that several output gap estimates are useful to forecast real GDP growth, particularly in the short term, and some appear also useful in the medium run. No single output gap measure appears superior to all others in all respects. JEL Classification: E31, E37, E52, E58data revisions, euro area, Inflation forecasts, output gap, real GDP forecasts, real-time data
Path Forecast Evaluation
A path forecast refers to the sequence of forecasts 1 to H periods into the future. A summary of the range of possible paths the predicted variable may follow for a given confidence level requires construction of simultaneous confidence regions that adjust for any covariance between the elements of the path forecast. This paper shows how to construct such regions with the joint predictive density and Scheffé’s (1953) S-method. In addition, the joint predictive density can be used to construct simple statistics to evaluate the local internal consistency of a forecasting exercise of a system of variables. Monte Carlo simulations demonstrate that these simultaneous confidence regions provide approximately correct coverage in situations where traditional error bands, based on the collection of marginal predictive densities for each horizon, are vastly off mark. The paper showcases these methods with an application to the most recent monetary episode of interest rate hikes in the U.S. macroeconomy.path forecast, simultaneous confidence region, error bands
Markov-Switching MIDAS Models
This paper introduces a new regression model - Markov-switching mixed data sampling (MS-MIDAS) - that incorporates regime changes in the parameters of the mixed data sampling (MIDAS) models and allows for the use of mixed-frequency data in Markov-switching models. After a discussion of estimation and inference for MS-MIDAS, and a small sample simulation based evaluation, the MS-MIDAS model is applied to the prediction of the US and UK economic activity, in terms both of quantitative forecasts of the aggregate economic activity and of the prediction of the business cycle regimes. Both simulation and empirical results indicate that MSMIDAS is a very useful specification.Business cycle, Mixed-frequency data, Non-linear models, Forecasting, Nowcasting
Time-Scale Transformations of Discrete-Time Processes
This paper investigates the effects of temporal aggregation when the aggregation frequency is variable and possibly stochastic. The results that we report include, as a particular case, the well-known results on fixed-interval aggregation, such as when monthly data is aggregated into quarters. A variable aggregation frequency implies that the aggregated process will exhibit time-varying parameters and non-spherical disturbances, even when these characteristics are absent from the original model. Consequently, we develop methods for specification and estimation of the aggregate models and show with an example how these methods perform in practice.time aggregation, time-scale transformation, irregularly spaced data, autoregressive conditional intensity model.
Factor-GMM Estimation with Large Sets of Possibly Weak Instruments
This paper analyses the use of factor analysis for instrumental variable estimation when the number of instruments tends to infinity. We consider cases where the unobserved factors are the optimal instruments but also cases where the factors are not necessarily the optimal instruments but can provide a summary of a large set of instruments. Further, the situation where many weak instruments exist is also considered in the context of factor models. Theoretical results, simulation experiments and empirical applications highlight the relevance and simplicity of Factor-GMM estimation.Factor models, Principal components, Instrumental variables, GMM, Weak instruments, DSGE models
A Comparison of Estimation Methods for Dynamic Factor Models of Large Dimensions
The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its theoretical properties and compare its performance with that of two alternative estimation approaches based, respectively, on static and dynamic principal components. The new method appears to perform best in recovering the factors in a set of simulation experiments, with static principal components a close second best. Dynamic principal components appear to yield the best fit, but sometimes there are leakages across the common and idiosyncratic components of the series. A similar pattern emerges in an empirical application with a large dataset of US macroeconomic time series.Factor models, Principal components, Subspace algorithms
The Forecasting Performance of Real Time Estimates of the EURO Area Output Gap
This paper provides real time evidence on the usefulness of the euro area output gap as a leading indicator for inflation and growth. A genuine real-time data set for the euro area is used, including vintages of several alternative gap estimates. It turns out that, despite some difference across output gap estimates and forecast horizons, the results point clearly to a lack of any usefulness of real-time output gap estimates for inflation forecasting both in the short term (one-quarter and one-year ahead) and the medium term (two-year and three-year ahead). By contrast, we find some evidence that several output gap estimates are useful to forecast real GDP growth, particularly in the short term, and some appear also useful in the medium run. A comparison with the US yields similar conclusions.Output gap, real-time data, euro area, inflation forecasts, real GDP forecasts, data revisions.
Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP
This paper compares different ways to estimate the current state of the economy using factor models that can handle unbalanced datasets. Due to the different release lags of business cycle indicators, data unbalancedness often emerges at the end of multivariate samples, which is sometimes referred to as the "ragged edge" of the data. Using a large monthly dataset of the German economy, we compare the performance of different factor models in the presence of the ragged edge: static and dynamic principal components based on realigned data, the Expectation-Maximisation (EM) algorithm and the Kalman smoother in a state-space model context. The monthly factors are used to estimate current quarter GDP, called the "nowcast", using different versions of what we call factor-based mixed-data sampling (Factor-MIDAS) approaches. We compare all possible combinations of factor estimation methods and Factor-MIDAS projections with respect to now-cast performance. Additionally, we compare the performance of the nowcast factor models with the performance of quarterly factor models based on time-aggregated and thus balanced data, which neglect the most timely observations of business cycle indicators at the end of the sample. Our empirical findings show that the factor estimation methods don't differ much with respect to nowcasting accuracy. Concerning the projections, the most parsimonious MIDAS projection performs best overall. Finally, quarterly models are in general outperformed by the nowcast factor models that can exploit ragged-edge data.nowcasting, business cycle, large factor models, mixed-frequency data, missing values, MIDAS
A Comparison of Methods for the Construction of Composite Coincident and Leading Indexes for the UK
In this paper we provide an overview of recent developments in the methodology for the construction of composite coincident and leading indexes, and apply them to the UK. In particular, we evaluate the relative merits of factor based models and Markov switching specifications for the construction of coincident and leading indexes. For the leading indexes we also evaluate the performance of probit models and pooling. The results indicate that alternative methods produce similar coincident indexes, while there are more marked di.erences in the leading indexes.Forecasting, Business cycles, Leading indicators, Coincident indicators, Turning points
- …
