366 research outputs found

    The polarimetric multi-frequency radio sources properties

    Full text link
    The polarization properties of extragalactic radio sources at frequencies higher than 20 GHz are still poorly constrained. However, their characterization would provide invaluable information about the physics of the emission processes and is crucial to estimate their contamination as foregrounds of the polarized cosmic microwave background (CMB) angular power spectrum on scales < 30 arcmin. In this contribution, after summarizing the state-of-the-art of polarimetric observations in the millimetric wavelength bands, we present our observations of a complete sample of 53 sources with S > 200 mJy (at 20 GHz) carried out with the Australia Telescope Compact Array between 5.5 and 38 GHz. The analysis clearly shows that polarization properties cannot be simply inferred from total intensity ones, as the spectral behaviors of the two signals are typically different

    High angular resolution observation of the Sunyaev-Zel'dovich effect in the massive z=0.83 cluster ClJ0152-1357

    Full text link
    X-ray observations of galaxy clusters at high redshift (z>0.5) indicate that they are more morphologically complex and less virialized than those at low-redshift. We present the first subarcmin resolution at 18 GHz observations of the Sunyaev-Zel'dovich (SZ) effect for ClJ0152-1357 using the Australia Telescope Compact Array. ClJ0152-1357 is a massive cluster at redshift z=0.83 and has a complex structure including several merging subclumps which have been studied at optical, X-ray, and radio wavelengths. Our high-resolution observations indicate a clear displacement of the maximum SZ effect from the peak of X-ray emission for the most massive sub-clump. This result shows that the cluster gas within the cluster substructures is not virialised in ClJ0152-1357 and we suggest that it is still recovering from a recent merger event. A similar offset of the SZ effect has been recently seen in the `bullet cluster' by Malu et al. This non-equilibrium situation implies that high resolution observations are necessary to investigate galaxy cluster evolution, and to extract cosmological constraints from a comparison of the SZ effect and X-ray signals.Comment: 5 pages, 4 figures, submitted to ApJ

    Average fractional polarization of extragalactic sources at Planck frequencies

    Full text link
    Recent detailed simulations have shown that an insufficiently accurate characterization of the contamination of unresolved polarized extragalactic sources can seriously bias measurements of the primordial cosmic microwave background (CMB) power spectrum if the tensor-to-scalar ratio r∼0.001,r\sim 0.001, as predicted by models currently of special interest (e.g., Starobinsky's R2R^2 and Higgs inflation). This has motivated a reanalysis of the median polarization fraction of extragalactic sources (radio-loud AGNs and dusty galaxies) using data from the \textit{Planck} polarization maps. Our approach, exploiting the intensity distribution analysis, mitigates or overcomes the most delicate aspects of earlier analyses based on stacking techniques. By means of simulations, we have shown that the residual noise bias on the median polarization fraction, Πmedian\Pi_{\rm median}, of extragalactic sources is generally \simlt 0.1\%. For radio sources, we have found Πmedian≃2.83%\Pi_{\rm median} \simeq 2.83\%, with no significant dependence on either frequency or flux density, in good agreement with the earlier estimate and with high-sensitivity measurements in the frequency range 5--40\,GHz. No polarization signal is detected in the case of dusty galaxies, implying 90\% confidence upper limits of \Pi_{\rm dusty}\simlt 2.2\% at 353\,GHz and of \simlt 3.9\% at 217\,GHz. The contamination of CMB polarization maps by unresolved point sources is discussed.Comment: 10 pages, 3 figures, 7 tables; revised version. In press on Astronomy and Astrophysic

    CO excitation in the Seyfert galaxy NGC7130

    Get PDF
    We present a coherent multi-band modelling of the CO Spectral Energy Distribution of the local Seyfert Galaxy NGC7130 to assess the impact of the AGN activity on the molecular gas. We take advantage of all the available data from X-ray to the sub-mm, including ALMA data. The high-resolution (~0.2") ALMA CO(6-5) data constrain the spatial extension of the CO emission down to ~70 pc scale. From the analysis of the archival CHANDRA and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L_2-10keV ~ 1.6x10^{43} ergs-1. We explore photodissociation and X-ray-dominated regions (PDRs and XDRs) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J~6, however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGN as a source of excitation, and find that it can reproduce the observed CO Spectral Energy Distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by current-generation of instruments to shed light on the properties of nearby galaxies adopting state-of-the art physical modelling.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Local Group dSph radio survey with ATCA (III): Constraints on Particle Dark Matter

    Full text link
    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.Comment: 17 pages, 6 figure panels. Companion papers: arXiv:1407.5479 and arXiv:1407.5482. v3: minor revision, matches published versio

    Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA

    Get PDF
    The local Seyfert 2 galaxy NGC5135, thanks to its almost face-on appearance, a bulge overdensity of stars, the presence of a large-scale bar, an AGN and a Supernova Remnant, is an excellent target to investigate the dynamics of inflows, outflows, star formation and AGN feedback. Here we present a reconstruction of the gas morphology and kinematics in the inner regions of this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA) archival data. To our purpose, we combine the available ∼\sim100 pc resolution ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic maps of two transitions of the CO molecule (tracer of molecular mass in star forming and nuclear regions), and of the CS molecule (tracer of the dense star forming regions) with the outcome of the SED decomposition. By applying the 3D^{\rm 3D}BAROLO software (3D-Based Analysis of Rotating Object via Line Observations), we have been able to fit the galaxy rotation curves reconstructing a 3D tilted-ring model of the disk. Most of the observed emitting features are described by our kinematic model. We also attempt an interpretation for the emission in few regions that the axisymmetric model fails to reproduce. The most relevant of these is a region at the northern edge of the inner bar, where multiple velocity components overlap, as a possible consequence of the expansion of a super-bubble.Comment: 15 pages, 13 figures, resubmitted to MNRAS after moderate revision

    A 20 GHz bright sample for {\delta} > +72{\deg}: I. Catalogue

    Get PDF
    During 2010-2011, the Medicina 32-m dish hosted the 7-feed 18-26.5 GHz receiver built for the Sardinia Radio Telescope, with the goal to perform its commissioning. This opportunity was exploited to carry out a pilot survey at 20 GHz over the area for {\delta} > + 72.3{\deg}. This paper describes all the phases of the observations, as they were performed using new hardware and software facilities. The map-making and source extraction procedures are illustrated. A customised data reduction tool was used during the follow-up phase, which produced a list of 73 confirmed sources down to a flux density of 115 mJy. The resulting catalogue, here presented, is complete above 200 mJy. Source counts are in agreement with those provided by the AT20G survey. This pilot activity paves the way to a larger project, the K-band Northern Wide Survey (KNoWS), whose final aim is to survey the whole Northern Hemisphere down to a flux limit of 50 mJy (5{\sigma}).Comment: 10 pages, 10 figures. Accepted by MNRA

    CO excitation in the Seyfert galaxy NGC 34: stars, shock or AGN driven?

    Full text link
    We present a detailed analysis of the X-ray and molecular gas emission in the nearby galaxy NGC 34, to constrain the properties of molecular gas, and assess whether, and to what extent, the radiation produced by the accretion onto the central black hole affects the CO line emission. We analyse the CO Spectral Line Energy Distribution (SLED) as resulting mainly from Herschel and ALMA data, along with X-ray data from NuSTAR and XMM-Newton. The X-ray data analysis suggests the presence of a heavily obscured AGN with an intrinsic luminosity of L1−100 keV≃4.0×1042_{\rm{1-100\,keV}} \simeq 4.0\times10^{42} erg s−1^{-1}. ALMA high resolution data (θ≃0.2′′\theta \simeq 0.2'') allows us to scan the nuclear region down to a spatial scale of ≈100\approx 100 pc for the CO(6-5) transition. We model the observed SLED using Photo-Dissociation Region (PDR), X-ray-Dominated Region (XDR), and shock models, finding that a combination of a PDR and an XDR provides the best fit to the observations. The PDR component, characterized by gas density log(n/cm−3)=2.5{\rm log}(n/{\rm cm^{-3}})=2.5 and temperature T=30T=30 K, reproduces the low-J CO line luminosities. The XDR is instead characterised by a denser and warmer gas (log(n/cm−3)=4.5{\rm log}(n/{\rm cm^{-3}})=4.5, T=65T =65 K), and is necessary to fit the high-J transitions. The addition of a third component to account for the presence of shocks has been also tested but does not improve the fit of the CO SLED. We conclude that the AGN contribution is significant in heating the molecular gas in NGC 34.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure

    Non-blind catalogue of extragalactic point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) first 3--year survey data

    Get PDF
    We have used the MHW2 filter to obtain estimates of the flux densities at the WMAP frequencies of a complete sample of 2491 sources, mostly brighter than 500 mJy at 5 GHz, distributed over the whole sky excluding a strip around the Galactic equator (b < 5 degrees). After having detected 933 sources above the 3 sigma level in the MHW2 filtered maps - our New Extragalactic WMAP Point Source (NEWPS_3sigma) Catalogue - we are left with 381 sources above 5 sigma in at least one WMAP channel, 369 of which constitute our NEWPS_5sigma catalogue. It is remarkable to note that 98 (i.e. 26%) sources detected above 5 sigma are `new', they are not present in the WMAP catalogue. Source fluxes have been corrected for the Eddington bias. Our flux density estimates before such correction are generally in good agreement with the WMAP ones at 23 GHz. At higher frequencies WMAP fluxes tend to be slightly higher than ours, probably because WMAP estimates neglect the deviations of the point spread function from a Gaussian shape. On the whole, above the estimated completeness limit of 1.1 Jy at 23 GHz we detected 43 sources missed by the blind method adopted by the WMAP team. On the other hand, our low-frequency selection threshold left out 25 WMAP sources, only 12 of which, however, are 5 sigma detections and only 3 have fluxes S at 23 GHz > 1.1 Jy. Thus, our approach proved to be competitive with, and complementary to the WMAP one.Comment: 18 pages, 6 figures, 5 tables. Accepted for publication in ApJ
    • …
    corecore