13 research outputs found

    Mouse spermatozoa with higher fertilization rates have thinner nuclei

    Get PDF
    Mashiko D, Ikawa M, Fujimoto K. 2017. Mouse spermatozoa with higher fertilization rates have thinner nuclei. PeerJ 5:e3913 https://doi.org/10.7717/peerj.391

    Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA

    Get PDF
    Mashiko, D., Fujihara, Y., Satouh, Y. et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3, 3355 (2013). https://doi.org/10.1038/srep0335

    Gene-deficient mouse model established by CRISPR/Cas9 system reveals 15 reproductive organ-enriched genes dispensable for male fertility

    Get PDF
    Since the advent of gene-targeting technology in embryonic stem cells, mice have become a primary model organism for investigating human gene function due to the striking genomic similarities between the two species. With the introduction of the CRISPR/Cas9 system for genome editing in mice, the pace of loss-of-function analysis has accelerated significantly. This has led to the identification of numerous genes that play crucial roles in male reproductive processes, including meiosis, chromatin condensation, flagellum formation in the testis, sperm maturation in the epididymis, and fertilization in the oviduct. Despite the advancements, the functions of many genes, particularly those enriched in male reproductive tissues, remain largely unknown. In our study, we focused on 15 genes and generated 13 gene-deficient mice [4933411K16Rik, Adam triple (Adam20, Adam25, and Adam39), BC048671, Cfap68, Gm4846, Gm4984, Gm13570, Nt5c1b, Ppp1r42, Saxo4, Sh3d21, Spz1, and Tektl1] to elucidate their roles in male fertility. Surprisingly, all 13 gene-deficient mice exhibited normal fertility in natural breeding experiments, indicating that these genes are not essential for male fertility. These findings have important implications as they may help prevent other research laboratories from duplicating efforts to generate knockout mice for genes that do not demonstrate an apparent phenotype related to male fertility. By shedding light on the dispensability of these genes, our study contributes to a more efficient allocation of research resources in the exploration of male reproductive biology

    Heterochromatin Dynamics during the Differentiation Process Revealed by the DNA Methylation Reporter Mouse, MethylRO

    Get PDF
    SummaryIn mammals, DNA is methylated at CpG sites, which play pivotal roles in gene silencing and chromatin organization. Furthermore, DNA methylation undergoes dynamic changes during development, differentiation, and in pathological processes. The conventional methods represent snapshots; therefore, the dynamics of this marker within living organisms remains unclear. To track this dynamics, we made a knockin mouse that expresses a red fluorescent protein (RFP)-fused methyl-CpG-binding domain (MBD) protein from the ROSA26 locus ubiquitously; we named it MethylRO (methylation probe in ROSA26 locus). Using this mouse, we performed RFP-mediated methylated DNA immunoprecipitation sequencing (MeDIP-seq), whole-body section analysis, and live-cell imaging. We discovered that mobility and pattern of heterochromatin as well as DNA methylation signal intensity inside the nuclei can be markers for cellular differentiation status. Thus, the MethylRO mouse represents a powerful bioresource and technique for DNA methylation dynamics studies in developmental biology, stem cell biology, as well as in disease states

    Conversion surgery for an initially unresectable, locally advanced pancreatic cancer after induction chemotherapy and carbon-ion radiotherapy: a case report

    No full text
    Abstract Background Pancreatic cancer has a very high mortality rate worldwide, and about 30–40% of all patients have extensive vascular involvement at initial diagnosis that precludes surgical intervention. Here, we describe our experience in a patient with locally advanced pancreatic cancer (LAPC) who underwent R0 conversion surgery after undergoing a combination of chemotherapy and carbon-ion radiotherapy (CIRT), which led to long-term relapse-free survival (23 months). Case presentation A 41-year-old woman presented a month ago with epigastralgia referred to our facility and was subsequently diagnosed with pancreatic cancer cStage III (Ph, TS2 (35 mm), cT4, cCH1, cDU1, cS1, cRP1, cPL1, cVsm0, cAsm1, cN0, cM0) that was also categorized as an unresectable LAPC. She immediately underwent 3 cycles of induction chemotherapy (gemcitabine + nanoparticle albumin-bound (nab-) paclitaxel) followed by CIRT with concurrent gemcitabine. Although significant shrinkage of the primary tumor occurred, frequent cholangitis due to duodenal stenosis of unknown etiology prevented continued chemotherapy, and 9 months after the first visit, she underwent a radical, subtotal, stomach-preserving, pancreaticoduodenectomy (SSPPD). Histopathologic examination of the resected tissue revealed a R0 resection with a histological response of Evans grade IIB. She was administered an almost full dose of S-1 as adjuvant chemotherapy for 6 months and has shown no signs of recurrence in 23 months. Conclusions We report a first case of successful conversion surgery for an initially unresectable LAPC after rapid induction GEM + nab-PTX chemotherapy followed by CIRT. Rapid induction GEM + nab-PTX chemotherapy followed by CIRT for LAPC might be a safe and effective treatment option
    corecore