519 research outputs found

    Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information

    Full text link
    A usual code for quantum wiretap channel requires an auxiliary random variable subject to the perfect uniform distribution. However, it is difficult to prepare such an auxiliary random variable. We propose a code that requires only an auxiliary random variable subject to a non-uniform distribution instead of the perfect uniform distribution. Further, we evaluate the exponential decreasing rate of leaked information and derive its equivocation rate. For practical constructions, we also discuss the security when our code consists of a linear error correcting code

    Exponential decreasing rate of leaked information in universal random privacy amplification

    Full text link
    We derive a new upper bound for Eve's information in secret key generation from a common random number without communication. This bound improves on Bennett et al(1995)'s bound based on the R\'enyi entropy of order 2 because the bound obtained here uses the R\'enyi entropy of order 1+s1+s for s∈[0,1]s \in [0,1]. This bound is applied to a wire-tap channel. Then, we derive an exponential upper bound for Eve's information. Our exponent is compared with Hayashi(2006)'s exponent. For the additive case, the bound obtained here is better. The result is applied to secret key agreement by public discussion.Comment: The organization is a little changed. This version is the same as the published versio
    • …
    corecore