191 research outputs found
Comparison between Vernier-cascade and MZI as transducer for biosensing with on-chip spectral filter
The Mach-Zehnder interferometer (MZI) and the Vernier-cascade are highly responsive photonic sensors with large design freedom. They are therefore very suitable for interrogation through a broadband source and an on-chip spectral filter, a sensing scheme that is well equipped for point-of-care applications. In this work, the MZI is shown to outperform the Vernier-cascade through a better minimum detectable wavelength shift as well as a higher power efficiency, indicating its superiority in this sensing scheme. Fabricated MZIs yield bulk detection limits down to 8.8 x 10(-7) refractive index units (RIU) in a point-of-care compatible measuring setup, indicating the potential of the proposed sensing scheme
Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths
In this letter, we report a novel high-index-contrast silicon nitride arrayed waveguide grating (AWG) for very near-infrared wavelengths. This device is fabricated through a process compatible with a complementary metal-oxide-semiconductor fabrication line and is therefore suitable for mass fabrication. The large phase errors that usually accompany high-index-platform AWGs are partly mitigated through design and fabrication adaptions, in particular the implementation of a two-level etch scheme. Multiple devices are reported, among which a 0.3-mm(2) device which, after the subtraction of waveguides loss, has a -1.2 dB on-chip insertion loss at the peak of the central channel and 20-dB crosstalk for operation similar to 900 nm with a channel spacing of 2 nm. These AWGs pave the way for numerous large-scale on-chip applications pertaining to spectroscopy and sensing
Silicon photonics biosensing: different packaging platforms and applications
We present two different platforms integrating silicon photonic biosensors. One is based on integration with reaction tubes to be compatible with traditional lab approaches. The other uses through-chip fluidics in order to achieve better mixing of the analyte
Study on the limit of detection in MZI-based biosensor systems
Mach-Zehnder interferometers are integrated photonic sensors that have yielded excellent detection limits down to 10(-7) RIU. They are of particular interest due to their large design freedom, allowing for example application in promising point-of-care compatible read-out schemes. The attainable detection limit of such sensors can interact with the sensor design in different ways, depending on the dominant origin of noise which can either be influencing a single sensor arm, both sensor arms or can be unrelated to the sensor itself. In this work, the interaction of these three noise regimes with the sensor design is examined. The regimes are combined into a framework that predicts the limit of detection as a function of sensor design. A set of experimental results confirms the validity of this obtained theoretical framework. This analysis provides a blueprint for optimization of MZI photonic sensors under any combination of read-out method and measurement circumstances
Label-free real-time optical monitoring of DNA hybridization using SiN Mach–Zehnder interferometer-based integrated biosensing platform
We report on the label-free real-time optical monitoring of DNA hybridization upon exposure to a flow of complementary DNA at different concentrations. The biosensor is composed of a silicon nitride integrated unbalanced Mach-Zehnder interferometer (MZI), with an integrated arrayed waveguide grating as a spectral filter. This MZI has been shown to have both sufficient multiplexing capability and limit of detection on the order of 10(-6) RIU. Probe DNA, consisting of a 36-mer fragment is covalently immobilized on the silicon nitride integrated biosensor. The wavelength shift is monitored upon complementary DNA targets being flown over the sensor. Concentrations of 1 pM can be easily detected. Also, an alternative route to modify the sensor surface with carboxylic groups using the photochemical reaction of fatty acids is proposed and preliminary XPS results are presented. Moreover, preliminary results for DNA obtained from a rolling circle amplification (RCA-DNA) process and spiked in a realistic amplification buffer are presented. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE
Silicon photonics for on-chip spectrophotometry
Silicon and Silicon Nitride photonics arc on their way to open the route towards integrated on-chip spectropholometers, Cost, miniaturization, miniaturization, hut also performance advantages ace at the origin of their potential We will discuss several integrated on-chip spectropholometers that are on the eve of commercial take up
Contrescarp van de omwalling in de Maria-Theresialei 1. Eindverslag van een toevalsvondst
Naar aanleiding van een toevalsvondst bij rioleringswerken werd muurwerk in kaart gebracht ter hoogte van Maria Theresialei 1. Wanneer de opbouw van het muurwerk en de positie ervan gekoppeld werd aan historische kaarten bleek het duidelijk om een deel van de 16de-eeuwse Spaanse Omwalling te gaan. Meer bepaald over een deel van de contrescarp of afboording van de vestinggracht
aan de landzijde tegenover bastion Huidevetterstoren
- …