81 research outputs found

    Entanglement between living bacteria and quantized light witnessed by Rabi splitting

    Full text link
    We model recent experiments on living sulphur bacteria interacting with quantised light, using the Dicke model. The strong coupling achieved between the bacteria and the light indicates that during the experiment the bacteria (treated as dipoles) and the quantized light are entangled. The vacuum Rabi splitting, which was measured in the experiment for a range of different parameters, can be used as an entanglement witness

    Quantum error correction for state transfer in noisy spin chains

    Get PDF
    Can robustness against experimental imperfections and noise be embedded into a quantum simulation? In this paper, we report on a special case in which this is possible. A spin chain can be engineered such that, in the absence of imperfections and noise, an unknown quantum state is transported from one end of the chain to the other, due only to the intrinsic dynamics of the system. We show that an encoding into a standard error correcting code (a Calderbank-Shor-Steane code) can be embedded into this simulation task such that a modified error correction procedure on read-out can recover from sufficiently low rates of noise during transport.Comment: 6 pages, 3 figure

    Almost perfect state transfer in quantum spin chains

    Full text link
    The natural notion of almost perfect state transfer (APST) is examined. It is applied to the modelling of efficient quantum wires with the help of XXXX spin chains. It is shown that APST occurs in mirror-symmetric systems, when the 1-excitation energies of the chains are linearly independent over rational numbers. This result is obtained as a corollary of the Kronecker theorem in Diophantine approximation. APST happens under much less restrictive conditions than perfect state transfer (PST) and moreover accommodates the unavoidable imperfections. Some examples are discussed.Comment: 11 page

    Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    Get PDF
    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time

    Synaptic Vesicle Docking: Sphingosine Regulates Syntaxin1 Interaction with Munc18

    Get PDF
    Consensus exists that lipids must play key functions in synaptic activity but precise mechanistic information is limited. Acid sphingomyelinase knockout mice (ASMko) are a suitable model to address the role of sphingolipids in synaptic regulation as they recapitulate a mental retardation syndrome, Niemann Pick disease type A (NPA), and their neurons have altered levels of sphingomyelin (SM) and its derivatives. Electrophysiological recordings showed that ASMko hippocampi have increased paired-pulse facilitation and post-tetanic potentiation. Consistently, electron microscopy revealed reduced number of docked vesicles. Biochemical analysis of ASMko synaptic membranes unveiled higher amounts of SM and sphingosine (Se) and enhanced interaction of the docking molecules Munc18 and syntaxin1. In vitro reconstitution assays demonstrated that Se changes syntaxin1 conformation enhancing its interaction with Munc18. Moreover, Se reduces vesicle docking in primary neurons and increases paired-pulse facilitation when added to wt hippocampal slices. These data provide with a novel mechanism for synaptic vesicle control by sphingolipids and could explain cognitive deficits of NPA patients

    Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields

    Get PDF
    Flower visiting insects provide a vitally important pollination service for many crops and wild plants. Recent decline of pollinating insects due to anthropogenic modification of habitats and climate, in particular from 1950's onwards, is a major and widespread concern. However, few studies document the extent of declines in species diversity, and no studies have previously quantified local abundance declines. We here make a quantitative assessment of recent historical changes in bumblebee assemblages by comparing contemporary and historical survey data. species observed in the 1930's, five species were not observed at present. The latter were all long-tongued, late-emerging species.Because bumblebees are important pollinators, historical changes in local bumblebee assemblages are expected to severely affect plant reproduction, in particular long-tubed species, which are pollinated by long-tongued bumblebees
    corecore