456 research outputs found
Materials science experiments in space
The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued
Three-dimensional brain reconstruction of in vivo electrode tracks for neuroscience and neural prosthetic applications
The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics
Divergent estimation error in portfolio optimization and in linear regression
The problem of estimation error in portfolio optimization is discussed, in
the limit where the portfolio size N and the sample size T go to infinity such
that their ratio is fixed. The estimation error strongly depends on the ratio
N/T and diverges for a critical value of this parameter. This divergence is the
manifestation of an algorithmic phase transition, it is accompanied by a number
of critical phenomena, and displays universality. As the structure of a large
number of multidimensional regression and modelling problems is very similar to
portfolio optimization, the scope of the above observations extends far beyond
finance, and covers a large number of problems in operations research, machine
learning, bioinformatics, medical science, economics, and technology.Comment: 5 pages, 2 figures, Statphys 23 Conference Proceedin
Angioedema Presenting As Chronic Gastrointestinal Symptoms
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72177/1/j.1572-0241.1993.tb07563.x.pd
Testing the Gaussian Copula Hypothesis for Financial Assets Dependences
Using one of the key property of copulas that they remain invariant under an
arbitrary monotonous change of variable, we investigate the null hypothesis
that the dependence between financial assets can be modeled by the Gaussian
copula. We find that most pairs of currencies and pairs of major stocks are
compatible with the Gaussian copula hypothesis, while this hypothesis can be
rejected for the dependence between pairs of commodities (metals).
Notwithstanding the apparent qualification of the Gaussian copula hypothesis
for most of the currencies and the stocks, a non-Gaussian copula, such as the
Student's copula, cannot be rejected if it has sufficiently many ``degrees of
freedom''. As a consequence, it may be very dangerous to embrace blindly the
Gaussian copula hypothesis, especially when the correlation coefficient between
the pair of asset is too high as the tail dependence neglected by the Gaussian
copula can be as large as 0.6, i.e., three out five extreme events which occur
in unison are missed.Comment: Latex document of 43 pages including 14 eps figure
NGSQC: cross-platform quality analysis pipeline for deep sequencing data
Abstract
Background
While the accuracy and precision of deep sequencing data is significantly better than those obtained by the earlier generation of hybridization-based high throughput technologies, the digital nature of deep sequencing output often leads to unwarranted confidence in their reliability.
Results
The NGSQC (N ext G eneration S equencing Q uality C ontrol) pipeline provides a set of novel quality control measures for quickly detecting a wide variety of quality issues in deep sequencing data derived from two dimensional surfaces, regardless of the assay technology used. It also enables researchers to determine whether sequencing data related to their most interesting biological discoveries are caused by sequencing quality issues.
Conclusions
Next generation sequencing platforms have their own share of quality issues and there can be significant lab-to-lab, batch-to-batch and even within chip/slide variations. NGSQC can help to ensure that biological conclusions, in particular those based on relatively rare sequence alterations, are not caused by low quality sequencing.http://deepblue.lib.umich.edu/bitstream/2027.42/112794/1/12864_2010_Article_3466.pd
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid He
We report results of torsional oscillator (TO) experiments on solid He at
temperatures above 1K. We have previously found that single crystals, once
disordered, show some mobility (decoupled mass) even at these rather high
temperatures. The decoupled mass fraction with single crystals is typically 20-
30%. In the present work we performed similar measurements on polycrystalline
solid samples. The decoupled mass with polycrystals is much smaller, 1%,
similar to what is observed by other groups. In particular, we compared the
properties of samples grown with the TO's rotation axis at different
orientations with respect to gravity. We found that the decoupled mass fraction
of bcc samples is independent of the angle between the rotation axis and
gravity. In contrast, hcp samples showed a significant difference in the
fraction of decoupled mass as the angle between the rotation axis and gravity
was varied between zero and 85 degrees. Dislocation dynamics in the solid
offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics
- special issue on Supersolidit
Life events and hemodynamic stress reactivity in the middle-aged and elderly
Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience
Expansion of a novel endogenous retrovirus throughout the pericentromeres of modern humans
Abstract
Background
Approximately 8% of the human genome consists of sequences of retroviral origin, a result of ancestral infections of the germ line over millions of years of evolution. The most recent of these infections is attributed to members of the human endogenous retrovirus type-K (HERV-K) (HML-2) family. We recently reported that a previously undetected, large group of HERV-K (HML-2) proviruses, which are descendants of the ancestral K111 infection, are spread throughout human centromeres.
Results
Studying the genomes of certain cell lines and the DNA of healthy individuals that seemingly lack K111, we discover new HERV-K (HML-2) members hidden in pericentromeres of several human chromosomes. All are related through a common ancestor, termed K222, which is a virus that infected the germ line approximately 25 million years ago. K222 exists as a single copy in the genomes of baboons and high order primates, but not New World monkeys, suggesting that progenitor K222 infected the primate germ line after the split between New and Old World monkeys. K222 exists in modern humans at multiple loci spread across the pericentromeres of nine chromosomes, indicating it was amplified during the evolution of modern humans.
Conclusions
Copying of K222 may have occurred through recombination of the pericentromeres of different chromosomes during human evolution. Evidence of recombination between K111 and K222 suggests that these retroviral sequences have been templates for frequent cross-over events during the process of centromere recombination in humans.http://deepblue.lib.umich.edu/bitstream/2027.42/111301/1/13059_2015_Article_641.pd
- …