52 research outputs found

    Unwinding Inflation

    Full text link
    Higher-form flux that extends in all 3+1 dimensions of spacetime is a source of positive vacuum energy that can drive meta-stable eternal inflation. If the flux also threads compact extra dimensions, the spontaneous nucleation of a bubble of brane charged under the flux can trigger a classical cascade that steadily unwinds many units of flux, gradually decreasing the vacuum energy while inflating the bubble, until the cascade ends in the self-annihilation of the brane into radiation. With an initial number of flux quanta Q_{0} \simgeq N, this can result in N efolds of inflationary expansion while producing a scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation. The power spectrum has an oscillatory component that does not decay away during inflation, relatively large tensor power, and interesting non-Gaussianities. Unwinding inflation fits naturally into the string landscape, and our preliminary conclusion is that consistency with observation can be attained without fine-tuning the string parameters. The initial conditions necessary for the unwinding phase are produced automatically by bubble formation, so long as the critical radius of the bubble is smaller than at least one of the compact dimensions threaded by flux.Comment: 29+15 pages, 10 figures, published versio

    Inflation from Flux Cascades

    Full text link
    When electric-type flux threads compact extra dimensions, a quantum nucleation event can break a flux line and initiate a cascade that unwinds many units of flux. Here, we present a novel mechanism for inflation based on this phenomenon. From the 4D point of view, the cascade begins with the formation of a bubble containing an open Friedmann-Robertson-Walker cosmology, but the vacuum energy inside the bubble is initially only slightly reduced, and subsequently decreases gradually throughout the cascade. If the initial flux number Q_0 ~ O(100), during the cascade the universe can undergo N ~ 60 efolds of inflationary expansion with gradually decreasing Hubble constant, producing a nearly scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation, and a potentially observable level of non-Gaussianity and tensor modes. The power spectrum has a small oscillatory component that does not decay away during inflation, with a period set approximately by the light-crossing time of the compact dimension(s). Since the ingredients are fluxes threading compact dimensions, this mechanism fits naturally into the string landscape, but does not appear to suffer from the eta problem or require fine-tuning (beyond the usual anthropic requirement of small vacuum energy after reheating).Comment: 5 pages, 1 figur

    D-brane scattering and annihilation

    Get PDF
    We study the dynamics of parallel brane-brane and brane-antibrane scattering in string theory in flat spacetime, focusing on the pair production of open strings that stretch between the branes. We are particularly interested in the case of scattering at small impact parameter b<lsb < l_s, where there is a tachyon in the spectrum when a brane and an antibrane approach within a string length. Our conclusion is that despite the tachyon, branes and antibranes can pass through each other with only a very small probability of annihilating, so long as gsg_s is small and the relative velocity vv is neither too small nor too close to 1. Our analysis is relevant also to the case of charged open string production in world-volume electric fields, and we make use of this T-dual scenario in our analysis. We briefly discuss the application of our results to a stringy model of inflation involving moving branes.Comment: 25+7 pages, 5 figure

    Large-scale anomalies from primordial dissipation

    Full text link
    We analyze an inflationary model in which part of the power in density perturbations arises due to particle production. The amount of particle production is modulated by an auxiliary field. Given an initial gradient for the auxiliary field, this model produces a hemispherical power asymmetry and a suppression of power at low multipoles similar to those observed by WMAP and Planck in the CMB temperature. It also predicts an additive contribution to δT\delta T with support only at very small ll that is aligned with the direction of the power asymmetry and has a definite sign, as well as small oscillations in the power spectrum at all ll.Comment: 1+15 pages, 7 figure

    Taken by Surprise: Contrast effect for Similarity Scores

    Full text link
    Accurately evaluating the similarity of object vector embeddings is of critical importance for natural language processing, information retrieval and classification tasks. Popular similarity scores (e.g cosine similarity) are based on pairs of embedding vectors and disregard the distribution of the ensemble from which objects are drawn. Human perception of object similarity significantly depends on the context in which the objects appear. In this work we propose the surprise score\textit{surprise score}, an ensemble-normalized similarity metric that encapsulates the contrast effect of human perception and significantly improves the classification performance on zero- and few-shot document classification tasks. This score quantifies the surprise to find a given similarity between two elements relative to the pairwise ensemble similarities. We evaluate this metric on zero/few shot classification and clustering tasks and typically find 10-15 % better performance compared to raw cosine similarity. Our code is available at https://github.com/MeetElise/surprise-similarity.Comment: 9 pages, 2 figures and 4 table

    Spatial Curvature Falsifies Eternal Inflation

    Full text link
    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10^-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature \Omega_k. On this basis we argue that a measurement of |\Omega_k| > 10^-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of \Omega_k < -10^-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of \Omega_k measurements and constitute a sharp test of these predictions.Comment: 16+2 pages, 2 figure
    • …
    corecore