2 research outputs found

    Tetrahydro-2-naphthyl and 2‑Indanyl Triazolopyrimidines Targeting <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity

    No full text
    Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor <b>1</b> (DSM265) is in clinical development. We sought to identify compounds with higher potency against <i>Plasmodium</i> DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the <i>p</i>-SF<sub>5</sub>-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the <i>P. falciparum</i> SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than <b>1</b>, they most likely would need to be part of a multidose regimen

    Neither mycorrhizal inoculation nor atmospheric CO<sub>2</sub> concentration has strong effects on pea root production and root loss

    Get PDF
    Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas’ disease
    corecore